(R2015), "Standard Test Methods for Specific Gravity of Halogenated Organic Solvents and Their Admixtures" (both incorporated by reference, see § 63.14); if you use this method, the specific gravity must be corrected to a standard temperature, information from the supplier or manufacturer of the material, or reference sources providing density or specific gravity data for pure materials. If there is disagreement between test results from ASTM D1475-13 or ASTM D2111-10 (R2015) and the supplier's or manufacturer's information, the test results will take precedence.

■ 10. Section 63.4142 is amended by revising paragraph (c) to read as follows:

§ 63.4142 How do I demonstrate continuous compliance with the emission limitations?

(c) As part of each semiannual compliance report required by § 63.4120, you must submit a statement that you were in compliance with the emission limitations during the reporting period because, during the compliance period, you used no thinners or cleaning materials that contained organic HAP, and you used no coatings for which the organic HAP content exceeded the applicable emission limit in § 63.4090.

■ 11. Section 63.4151 is amended by revising paragraph (h) to read as follows:

§ 63.4151 How do I demonstrate initial compliance with the emission limitations?

(h) The organic HAP emission rate for the initial compliance period must be less than or equal to the applicable emission limit in § 63.4090. You must keep all records as required by §§ 63.4130 and 63.4131. As part of the Notification of Compliance Status required by § 63.4110, you must identify the coating operation(s) for which you used the emission rate without add-on controls option and, if there were no deviations from the emission limitations, submit a statement that the coating operation(s) was (were) in compliance with the emission limitations during the initial compliance period because the organic HAP emission rate was less than or equal to the applicable emission limit in § 63.4090.

■ 12. Section 63.4152 is amended by revising paragraphs (a) and (c) to read as follows:

§ 63.4152 How do I demonstrate continuous compliance with the emission limitations?

(a) To demonstrate continuous compliance, for the compliance period, the organic HAP emission rate determined according to § 63.4151(a) through (g) must be less than or equal to the applicable emission limit in § 63.4090. Each month following the initial compliance period described in § 63.4150 is a compliance period.

(c) As part of each semiannual compliance report required by § 63.4120, if there were no deviations from the emission limitations, you must submit a statement that you were in compliance with the emission limitations during the reporting period because, during the compliance period, the organic HAP emission rate was less than or equal to the applicable emission limit in § 63.4090.

■ 13. Section 63.4160 is amended by revising the section heading and paragraphs (a)(1) and (b)(1) to read as follows:

§ 63.4160 By what date must I conduct initial performance tests and other Initial compliance demonstrations?

(a) * * *

(1) All emission capture systems, addon control devices, and CPMS you use to demonstrate compliance must be installed and operating no later than the applicable compliance date specified in § 63.4083. Except for solvent recovery systems for which you conduct liquidliquid material balances according to §63.4161(h), you must conduct a performance test of each capture system and add-on control device according to the procedures in §§ 63.4164, 63.4165, and 63.4166, and establish the operating limits required by § 63.4092 no later than the compliance date specified in § 63.4083. For a solvent recovery system for which you conduct liquid-liquid material balances according to § 63.4161(h), you must initiate the first material balance no later than the compliance date specified in § 63.4083. *

(b) * * *
(1) All emission cap

(1) All emission capture systems, addon control devices, and CPMS you use to demonstrate compliance must be

installed and operating no later than the applicable compliance date specified in § 63.4083. Except for solvent recovery systems for which you conduct liquidliquid material balances according to § 63.4161(h), you must conduct a performance test of each capture system and add-on control device according to the procedures in $\S\S 63.4164, 63.4165,$ and 63.4166, and establish the operating limits required by § 63.4092 no later than 180 days after the applicable compliance date specified in § 63.4083. For a solvent recovery system for which you conduct liquid-liquid material balances according to § 63.4161(h), you must initiate the first material balance no later than 180 days after the applicable compliance date specified in § 63.4083.

■ 14. Section 63.4161 is amended by revising paragraphs (g) introductory text and (h)(3) to read as follows:

§ 63.4161 How do I demonstrate initial compliance?

(g) Calculate the organic HAP emissions reduction for controlled coating operations not using liquidliquid material balance. For each controlled coating operation using an emission capture system and add-on control device other than a solvent recovery system for which you conduct liquid-liquid material balances, calculate organic HAP emissions reduction, using Equation 1 of this section, by applying the emission capture system efficiency and add-on control device efficiency to the mass of organic HAP contained in the coatings, thinners, and cleaning materials that are used in the coating operation served by the emission capture system and add-on control device during the compliance period. For any period of time a deviation specified in § 63.4163(c) or (d) occurs in the controlled coating operation, you must assume zero efficiency for the emission capture system and add-on control device. For the purposes of completing the compliance calculations, you must treat the materials used during a deviation on a controlled coating operation as if they were used on an uncontrolled coating operation for the time period of the deviation. You must not include those materials in the calculations of organic HAP emissions reduction in Equation 1 of this section.

$$H_{\epsilon} = \left(A_I + B_I + C_I\right) \left(\frac{CE}{100} \times \frac{DRE}{100}\right) \qquad (Eq. 1)$$

Where:

H_C = mass of organic HAP emissions reduction for the controlled coating operation during the compliance period, kg.

A₁ = total mass of organic HAP in the coatings used in the controlled coating operation, kg, as calculated in Equation 1A of this section.

B₁ = total mass of organic HAP in the thinners used in the controlled coating operation, kg, as calculated in Equation 1B of this section.

 C_1 = total mass of organic HAP in the cleaning materials used in the controlled coating operation during the compliance period, kg, as calculated in Equation 1C of this section.

CE = capture efficiency of the emission capture system vented to the add-on control device, percent. Use the test methods and procedures specified in §§ 63.4164 and 63.4165 to measure and record capture efficiency.

DRE = organic HAP destruction or removal efficiency of the add-on control device, percent. Use the test methods and procedures in §§ 63.4164 and 63.4166 to measure and record the organic HAP destruction or removal efficiency.

* * * * * * * (h) * * *

- (3) Determine the mass fraction of volatile organic matter for each coating used in the coating operation controlled by the solvent recovery system during the compliance period, kg volatile organic matter per kg coating. You may determine the volatile organic matter mass fraction using Method 24 in appendix A-7 of part 60, ASTM D2369-10 (R2015), "Test Method for Volatile Content of Coatings" (incorporated by reference, see § 63.14), or an EPA approved alternative method. Alternatively, you may use information provided by the manufacturer or supplier of the coating. In the event of any inconsistency between information provided by the manufacturer or supplier and the results of Method 24, ASTM D2369-10 (R2015), or an approved alternative method, the test method results will govern.
- 15. Section 63.4163 is amended by revising the section heading and paragraph (c) introductory text, adding paragraph (c)(3), and revising paragraphs (e) and (h) to read as follows:

§ 63.4163 How do I conduct periodic performance tests and demonstrate continuous compliance with the emission limitations?

* * * * *

- (c) You must demonstrate continuous compliance with each operating limit required by § 63.4092 that applies to you as specified in Table 1 to this subpart, and you must conduct periodic performance tests as specified in paragraph (c)(3) of this section.
- (3) Except for solvent recovery systems for which you conduct liquidliquid material balances according to § 63.4161(h), you must conduct according to the procedures in §§ 63.4164, 63.4165, and 63.4166 periodic performance tests of each capture system and add-on control device used to demonstrate compliance, and you must establish the operating limits required by § 63.4092. You must conduct the first periodic performance test and establish the operating limits required by § 63.4092 before March 15, 2022, unless you are already required to complete periodic performance tests as a requirement of renewing your facility's operating permit under 40 CFR part 70 or 40 CFR part 71 and have conducted a performance test on or after March 15, 2017. Thereafter you must conduct a performance test no later than 5 years following the previous performance test. Operating limits must be confirmed or reestablished during each performance test.
- (e) You must demonstrate continuous compliance with the work practice standards in § 63.4093. If you did not develop a work practice plan, did not implement the plan, or did not keep the records required by § 63.4130(k)(8), this is a deviation from the work practice standards that must be reported as specified in §§ 63.4110(b)(6) and 63.4120(g).
- (h) Before September 12, 2019, consistent with §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction of the emission capture system, add-on control device, or coating operation that may affect emission capture or control device efficiency are not violations if you demonstrate to the Administrator's satisfaction that you were operating in accordance with § 63.6(e). The Administrator will determine whether deviations that occur during a period of startup, shutdown, or malfunction are violations according to the provisions in § 63.6(e). On and after September 12, 2019, as specified in § 63.4100(b), at all

times, the owner or operator must operate and maintain any affected source, including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions, and determination of whether a source is operating in compliance with operation and maintenance requirements will be based on information available to the Administrator.

■ 16. Section 63.4164 is amended by revising paragraphs (a) introductory text and (a)(1) to read as follows:

§ 63.4164 What are the general requirements for performance tests?

(a) You must conduct each performance test required by § 63.4160 according to the requirements in this section unless you obtain a waiver of the performance test according to the provisions in § 63.7(h).

(1) Representative coating operation operating conditions. You must conduct the performance test under representative operating conditions for the coating operation. Operations during periods of startup, shutdown, or nonoperation do not constitute representative conditions for purposes of conducting a performance test. The owner or operator may not conduct performance tests during periods of malfunction. You must record the process information that is necessary to document operating conditions during the test and explain why the conditions represent normal operation. Upon request, you must make available to the Administrator such records as may be necessary to determine the conditions of performance tests.

■ 17. Section 63.4166 is amended by revising paragraphs (a)(1) through (4) and (b) introductory text to read as follows:

§ 63.4166 How do I determine the add-on control device emission destruction or removal efficiency?

(a) * * *

(1) Use Method 1 or 1A in appendix A-1 of part 60, as appropriate, to select sampling sites and velocity traverse points.

(2) Use Method 2, 2A, 2C, 2D, or 2F in appendix A-1, or Method 2G in appendix A-2, of part 60, as

appropriate, to measure gas volumetric flow rate.

- (3) Use Method 3, 3A, or 3B in appendix A–2 of part 60, as appropriate, for gas analysis to determine dry molecular weight. You may also use as an alternative to Method 3B, the manual method for measuring the oxygen, carbon dioxide, and carbon monoxide content of exhaust gas in ANSI/ASME, PTC 19.10–1981, "Flue and Exhaust Gas Analyses" (incorporated by reference, see § 63.14).
- (4) Use Method 4 in appendix A-3 of part 60 to determine stack gas moisture.
- (b) Measure total gaseous organic mass emissions as carbon at the inlet and outlet of the add-on control device simultaneously, using either Method 25 or 25A in appendix A-7 of part 60, as specified in paragraphs (b)(1) through (3) of this section. You must use the same method for both the inlet and outlet measurements. You may use Method 18 in appendix A-6 of part 60 to subtract methane emissions from measured total gaseous organic mass emissions as carbon.
- 18. Section 63.4167 is amended by revising the section heading, introductory text, and paragraph (f)(1) to read as follows:

§ 63.4167 How do I establish the emission capture system and add-on control device operating limits during performance tests?

During the performance tests required by §§ 63.4160 and 63.4163, and described in §§ 63.4164, 63.4165, and 63.4166, you must establish the operating limits required by § 63.4092 according to this section unless you have received approval for alternative monitoring and operating limits under § 63.8(f) as specified in § 63.4092.

(f) * * *

(1) During the capture efficiency determination required by §§ 63.4160 and 63.4163, and described in §§ 63.4164 and 63.4165, you must monitor and record either the gas volumetric flow rate or the duct static pressure for each separate capture device in your emission capture system at least once every 15 minutes during each of the three test runs at a point in the duct between the capture device and the add-on control device inlet.

■ 19. Section 63.4168 is amended by revising paragraphs (a)(4) and (5) and (c)(2) and (3) to read as follows:

§ 63.4168 What are the requirements for continuous parameter monitoring system installation, operation, and maintenance?

(a) * * *
(4) You must maintain the CPMS at all times in accordance with § 63.4100(b) and have readily available necessary parts for routine repairs of the monitoring equipment.

(5) Before September 12, 2019, you must operate the CPMS and collect emission capture system and add-on control device parameter data at all times that a controlled coating operation is operating except during monitoring malfunctions, associated repairs, and required quality assurance or control activities (including, if applicable, calibration checks and required zero and span adjustments). On and after September 12, 2019, you must operate the CPMS and collect emission capture system and add-on control device parameter data at all times in accordance with § 63.4100(b).

(c) * * *

(2) For a catalytic oxidizer, install a gas temperature monitor in the gas stream immediately before the catalyst bed, and if you establish operating limits according to § 63.4167(b)(1) and (2), also install a gas temperature monitor in the gas stream immediately after the catalyst bed.

. *

(3) For each gas temperature monitoring device, you must comply with the requirements in paragraphs (c)(3)(i) through (vii) of this section. For the purposes of this paragraph (c)(3), a thermocouple is part of the temperature sensor.

■ 20. Section 63.4181 is amended by revising the definition of "Deviation" to read as follows:

§ 63.4181 What definitions apply to this subpart?

Deviation means:

- (1) Before September 12, 2019, any instance in which an affected source subject to this subpart or an owner or operator of such a source:
- (i) Fails to meet any requirement or obligation established by this subpart including but not limited to any emission limit, or operating limit, or work practice standard;
- (ii) Fails to meet any term or condition that is adopted to implement an applicable requirement in this subpart and that is included in the operating permit for any affected source required to obtain such a permit; or
- (iii) Fails to meet any emission limit, or operating limit, or work practice standard in this subpart during startup, shutdown, or malfunction regardless of whether or not such failure is permitted by this subpart; and
- (2) On and after September 12, 2019, any instance in which an affected source subject to this subpart or an owner or operator of such a source:
- (i) Fails to meet any requirement or obligation established by this subpart including but not limited to any emission limit, or operating limit, or work practice standard; or
- (ii) Fails to meet any term or condition that is adopted to implement an applicable requirement in this subpart and that is included in the operating permit for any affected source required to obtain such a permit.
- 21. Table 2 to subpart NNNN of part 63 is revised to read as follows:

TABLE 2 TO SUBPART NNNN OF PART 63—APPLICABILITY OF GENERAL PROVISIONS TO SUBPART NNNN [You must comply with the applicable General Provisions requirements according to the following table:]

Citation	Subject	Applicable to subpart NNNN	Explanation
\$ 63.1(b)(1)-(3) \$ 63.1(c)(1) \$ 63.1(c)(2)-(3)	General Applicability	Yes Yes. No	Applicability to subpart NNNN is also specified in § 63.4081. Area sources are not subject to subpart NNNN.

TABLE 2 TO SUBPART NNNN OF PART 63—APPLICABILITY OF GENERAL PROVISIONS TO SUBPART NNNN—Continued [You must comply with the applicable General Provisions requirements according to the following table:]

Citation	Subject	Applicable to subpart NNNN	Explanation
§ 63.2	Definitions	Yes	Additional definitions are specified in § 63.4181.
0.00.0(=) (=)	Units and Abbreviations	Yes.	300111011
§ 63.3(a)–(c)	Prohibited Activities	Yes.	
§ 63.4(a)(1)–(5) § 63.4(b)–(c)	Circumvention/Severability	Yes.	
§ 63.5(a)	Construction/Reconstruction	Yes.	
§ 63.5(b)(1)–(6)	Requirements for Existing, Newly Con- structed, and Reconstructed Sources.	Yes.	
§ 63.5(d)	Application for Approval of Construction/	Yes.	
§ 63.5(e)	Approval of Construction/Reconstruction	Yes.	
§ 63.5(f)	Approval of Construction/Reconstruction Based on Prior State Review.	Yes.	
§ 63.6(a)	Compliance With Standards and Mainte- nance Requirements—Applicability.	Yes	Section 63.4083 specifies the compliance
§ 63.6(b)(1)–(7)	Compliance Dates for New and Reconstructed Sources.	Yes	dates. Section 63.4083 specifies the compliance
§ 63.6(c)(1)–(5)	Compliance Dates for Existing Sources	1	dates. See § 63.4100(b) for general duty require-
§ 63.6(e)(1)(i)	Operation and Maintenance	Yes, before September 12, 2019. No on and after September 12, 2019.	ment.
§ 63.6(e)(1)(ii)	Operation and Maintenance	Yes, before September 12, 2019. No on and after September 12, 2019.	
P. 60 6(a)(1)(iii)	Operation and Maintenance	Yes.	
§ 63.6(e)(1)(iii) § 63.6(e)(3)	Startup, shutdown, malfunction plan (SSMP).	Yes, before September 12, 2019. No on and after September 12, 2019.	
§ 63.6(f)(1)	Compliance Except During Startup, Shutdown, and Malfunction.	Yes, before September 12, 2019. No on and after September 12, 2019.	
§ 63.6(f)(2)–(3)	Methods for Determining Compliance	Yes.	
§ 63.6(g)(1)–(3) § 63.6(h)	Use of an Alternative Standard	Yes	Subpart NNNN does not establish opacit standards and does not require continuous opacity monitoring system (COMS).
s.co.e(i)(1) (16)	Extension of Compliance	Yes.	, ,
§ 63.6(i)(1)–(16)		Yes.	
§ 63.7(a)(1)		Yes	Applies to all affected sources. Additional requirements for performance testing are specified in §§ 63.4164, 63.4165, and 63.4166.
§ 63.7(a)(2)	Performance Test Requirements—Dates	Yes	Applies only to performance tests for capture system and control device efficience at sources using these to comply with the standards. Section 63.4160 specifies the schedule for performance test requirements that are earlier than those specified in § 63.7(a)(2).
§ 63.7(a)(3)	Performance Tests Required By the Administrator.	Yes.	
§ 63.7(b)–(d)	Performance Test Requirements—Notifica- tion, Quality Assurance Facilities Nec- essary for Safe Testing, Conditions Dur-	• 1	Applies only to performance tests for cal ture system and add-on control devic efficiency at sources using these comply with the standard.
§ 63.7(e)(1)	ing Test. Conduct of performance tests	Yes, before September 12, 2019. No on and after September 12, 2019.	See § 63.4164(a)(1).
§ 63.7(e)(2)-(4) § 63.7(f)	Conduct of performance tests	Yes. Yes	Applies to all test methods except those used to determine capture system ef

TABLE 2 TO SUBPART NNNN OF PART 63—APPLICABILITY OF GENERAL PROVISIONS TO SUBPART NNNN—Continued [You must comply with the applicable general provisions requirements according to the following table:]

Citation	Subject	Applicable to subpart NNNN	Explanation
§ 63.7(g)–(h)	Performance Test Requirements—Dat Analysis, Recordkeeping, Reporting Waiver of Test.		ture system and add-on control device efficiency at sources using these to
§ 63.8(a)(1)–(3)	Monitoring Requirements—Applicability	. Yes	tem and add-on control device efficiency at sources using these to comply with the standard. Additional requirements for
§ 63.8(a)(4)	J 10	1	monitoring are specified in §63.4168. Subpart NNNN does not have monitoring requirements for flares.
§ 63.8(c)(1)	Conduct of Monitoring	Yes, before September 12, 2019. No on and after September 12,	requirements for nates.
§ 63.8(c)(2)–(3)	Operation and Maintenance.		tem and add-on control device efficiency at sources using these to comply with the standard. Additional requirements for CMS operations and maintenance are
	CMS		Section 63.4168 specifies the require- ments for the operation of CMS for cap- ture systems and add-on control devices at sources using these to comply.
§ 63.8(c)(6)	CMS Requirements		Subpart NNNN does not have opacity or visible emission standards.
§ 63.8(c)(7)	CMS Out-of-Control Periods		Section 63.4168 specifies the require- ments for monitoring systems for cap- ture systems and add-on control devices at sources using these to comply.
§ 63.8(c)(8)	CMS Out-of-Control Periods and Reporting	Yes. No	Section 63.4120 requires reporting of CMS
\$ 63.8(d)-(e)	Quality Control Program and CMS Performance Evaluation.	No	out-of-control periods. Subpart NNNN does not require the use of CEMS.
63.8(f)(1)–(5) 63.8(f)(6)	Use of an Alternative Monitoring Method Alternative to Relative Accuracy Test	Yes No	Subpart NNNN does not require the use of
63.8(g)(1)–(5)	Data Reduction	No	CEMS. Sections 63.4167 and 63.4168 specify monitoring data reduction.
63.9(a)-(d) 63.9(e)	Notification Requirements	Yes. Yes	Applies only to capture system and add-on control device performance tests at sources using these to comply with the
63.9(f)	Notification of Visible Emissions/Opacity	No	standard. Subpart NNNN does not have opacity or
	Additional Notifications When Using CMS	No	visible emission standards. Subpart NNNN does not require the use of CEMS.
		Yes	Section 63.4110 specifies the dates for submitting the notification of compliance
63.10(a)	Change in Previous Information	Yes. Yes. Yes.	status.
	General Recordkeeping Requirements	Yes	Additional requirements are specified in §§ 63.4130 and 63.4131.
	tion of Startups and Shutdowns.	Yes, before September 12, 2019. No on and after September 12, 2019.	See § 63.4130(j).
53.10(b)(2)(ii)	Recordkeeping of Failures to Meet Standards.	Yes, before September 12, 2019. No on and after September 12, 2019.	See § 63.4130(j).

TABLE 2 TO SUBPART NNNN OF PART 63—APPLICABILITY OF GENERAL PROVISIONS TO SUBPART NNNN—Continued [You must comply with the applicable General Provisions requirements according to the following table:]

Citation	Subject	Applicable to subpart NNNN	Explanation		
§ 63.10(b)(2)(iii)	Recordkeeping Relevant to Maintenance of Air Pollution Control and Monitoring	Yes.			
§ 63.10(b)(2)(iv)–(v)	Equipment. Actions Taken to Minimize Emissions During SSM.	Yes, before September 12, 2019. No, on and after September 12, 2019.	See § 63.4130(j)(4) for a record of actions taken to minimize emissions during a deviation from the standard.		
§ 63.10(b)(2)(vi)	Records for CMS malfunctions	Yes, before September 12, 2019. No, on and after September 12, 2019.	See § 63.4130(j) for records of periods deviation from the standard, including stances where a CMS is inoperative out-of-control.		
§ 63.10(b)(2)(vii)–(xi)	Records	Yes.			
§ 63.10(b)(2)(xii)	Records	Yes.	Subpart NNNN does not require the use of		
§ 63.10(b)(2)(xlii)		No	CEMS.		
§ 63.10(b)(2)(xiv)	***************************************	Yes.			
§ 63.10(b)(3)	Recordkeeping Requirements for Applicability Determinations.	Yes.			
§ 63.10(c)(1)-(6)	Additional Recordkeeping Requirements for Sources with CMS.	Yes.			
§ 63.10(c)(7)–(8)	Additional Recordkeeping Requirements for Sources with CMS.	No	See § 63.4130(j)(1) for records of periods of deviation from the standard, including instances where a CMS is inoperative or out-of-control.		
§ 63.10(c)(10)–(14)	for Sources with CMS.	Yes.			
§ 63.10(c)(15)		Yes, before September 12, 2019. No, on and after September 12, 2019.			
§ 63.10(d)(1)	General Reporting Requirements	Yes	Additional requirements are specified in §63.4120.		
§ 63.10(d)(2)	Report of Performance Test Results	Yes	Additional requirements are specified in § 63.4120(h).		
§ 63.10(d)(3)	Reporting Opacity or Visible Emissions Observations.	No	Subpart NNNN does not require opacity o visible emissions observations.		
§ 63.10(d)(4)	Progress Reports for Sources With Compliance Extensions.	Yes.			
§ 63.10(d)(5)		Yes, before September 12, 2019. No, on and after September 12, 2019.	See § 63.4120(g).		
§ 63.10(e)(1)–(2)	Additional CMS Reports	. No	CEMS		
§ 63.10(e)(3)	. Excess Emissions/CMS Performance Re-		Section 63.4120(g) specifies the content of periodic compliance reports.		
§ 63.10(e)(4)	ports. COMS Data Reports	. No	Subpart NNNN does not specify require ments for opacity or COMS.		
§ 63.10(f)	. Recordkeeping/Reporting Waiver	. Yes.			
§ 63.11		. No	Subpart NNNN does not specify use of flares for compliance.		
§ 63.12	State Authority and Delegations	. Yes.			
§ 63.13	Addresses	. Yes.	li .		
§ 63.14	Incorporation by Reference	Yes.			
§ 63.15		. Yes.			

■ 22. Table 5 to subpart NNNN of part 63 is added to read as follows:

TABLE 5 TO SUBPART NNNN OF PART 63—LIST OF HAZARDOUS AIR POLLUTANTS THAT MUST BE COUNTED TOWARD TOTAL ORGANIC HAP CONTENT IF PRESENT AT 0.1 PERCENT OR MORE BY MASS

TOTAL ORGANIO TIME CONTENT IN THE	
Chemical name	CAS No.
1,1,2,2-Tetrachloroethane	79-34-5
1,1,2,2-Tetrachloroetnane	79-00-5
1,1,2-Trichloroethane	57-14-7
1.1-Dimethylhydrazine	V.

TABLE 5 TO SUBPART NNNN OF PART 63—LIST OF HAZARDOUS AIR POLLUTANTS THAT MUST BE COUNTED TOWARD TOTAL ORGANIC HAP CONTENT IF PRESENT AT 0.1 PERCENT OR MORE BY MASS—Continued

Chemical name	CAS
1,2-Dibromo-3-chloropropane	00
1)= -ipitonyinyalazino	400
,3-Butadiene	. 122
,3-Dichloropropene	106
4-Dioyane	. 542-
T DIOXAGO	400
rwz,o Dirintotolderie (Illixtule)	00004
· Directordorio managementale del constitución de la constitución de l	404
TOTAL CITE CHANGING	
Nitropropane	95-
3'-Dichlorobenzidine	79-
3'-Dichlorobenzidine	91-
o Dimotrioxyberizidirje ,	1440
crylamide	75-
crylamide	79-
Aylonune	4.00
	0.40
oha-Hexachlorocyclohexane (a-HCH)	319-
	62-
enzene	71-
7 ZWIII 0	92-
ALEGRICATION OF THE PROPERTY O	98-
ALLY ORIONGE AND	100-
	319-
s(2-ethylhexyl)phthalates(chloromethyl)ether	117
	542-
	75-
PER	133-
DOLL TOTAL COLOR C	
lordane	56-
lorohenzilate	57
lorobenzilate	510-
NOTO CONTINUE ASSESSMENT ASSESSME	67⊣
ioroprofic	126-9
bools (mixed)	1319-
Planoethyl ether	
chloroethyl ether	3547-0
chloroethyl ether	111-4
chloryos	62-7
ionoronyuni	106-8
lyi doryidic	140-8
lylene dibrothide	
ylene dichloride	106–9
viene oxide	107–0
ylene oxide	75–2
World allouida	96–4
	75–3
	50-C
ACCURIO	
rachlorohenzene	76–4
xachlorobenzene	1187
acomorphism	87–6
Addition of the state of the st	67–7
razine	
	302-0
lane (hexachlorocyclohexane, all isomers)	78–5
Proced	588
770301	108-3
riyiche chionde	75–0
A III I I I I I I I I I I I I I I I I I	91–2
PPOLICOTO CONTINUED CONTIN	
osodimethylamine	98-9
resol	62-7
resol	95-4
/IUIGITE	95-5
AL 1997 1	56–3
COO!	
chlorobenzene	106-4
tachloronitrobenzene	106-4
tachiologiitiobelizerie	82-6
tachiolophichol	87–86
70/MI	114-26
Dyletic dictilotide	
pylene oxide	78-87
oylene oxide	75–56
VIII V	91-22
acinonemene	127-18
achloroetheneaphene	

TABLE 5 TO SUBPART NNNN OF PART 63—LIST OF HAZARDOUS AIR POLLUTANTS THAT MUST BE COUNTED TOWARD TOTAL ORGANIC HAP CONTENT IF PRESENT AT 0.1 PERCENT OR MORE BY MASS—Continued

Chemical name	CAS No.
Trichloroethylene Trifluralin Vinyl bromide Vinyl chloride Vinylidene chloride	79–01–6 1582–09–8 593–60–2 75–01–4 75–35–4

Subpart OOOO—National Emission Standards for Hazardous Air Pollutants: Printing, Coating, and Dyeing of Fabrics and Other Textiles

■ 23. Section 63.4300 is amended by revising paragraphs (a)(3)(i), (b), and (c) to read as follows:

§ 63.4300 What are my general requirements for complying with this subpart?

- (a) * * *
- (3) * * *
- (i) Before September 12, 2019, the web coating/printing or dyeing/finishing operation(s) must be in compliance with the applicable emission limit in Table 1 to this subpart or minimize emissions at all times as required by § 63.6(e)(1). On and after September 12, 2019, the web coating/printing or dyeing/finishing operation(s) must be in compliance with the applicable emission limit in Table 1 to this subpart at all times.

* * * * *

- (b) Before September 12, 2019, you must always operate and maintain your affected source, including air pollution control and monitoring equipment, according to the provisions in § 63.6(e)(1)(i). On and after September 12, 2019, at all times, the owner or operator must operate and maintain any affected source, including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions. The general duty to minimize emissions does not require the owner or operator to make any further efforts to reduce emissions if levels required by the applicable standard have been achieved. Determination of whether a source is operating in compliance with operation and maintenance requirements will be based on information available to the Administrator that may include, but is not limited to, monitoring results, review of operation and maintenance procedures, review of operation and maintenance records, and inspection of the affected source.
- (c) Before September 12, 2019, if your affected source uses an emission capture system and add-on control device, you must develop a written startup, shutdown, and malfunction plan according to the provisions in § 63.6(e)(3). The plan must address the startup, shutdown, and corrective actions in the event of a malfunction of the emission capture system or the addon control device. The plan must also address any web coating/printing or dyeing/finishing operation equipment such as conveyors that move the substrate among enclosures that may cause increased emissions or that would affect capture efficiency if the process equipment malfunctions. A startup, shutdown, and malfunction plan is not required on and after September 12, 2019.
- 24. Section 63.4310 is amended by revising paragraphs (c)(9) introductory text and (c)(9)(iv) and adding paragraph (c)(9)(v) to read as follows:

§ 63.4310 What notifications must I submit?

(a) * * *

(9) For the emission rate with add-on controls option as specified in § 63.4291(a)(3) and (c)(3), the organic HAP overall control efficiency option as specified in § 63.4291(a)(4), and the oxidizer outlet organic HAP concentration option as specified in § 63.4291(a)(5), for each controlled web coating/printing or dyeing/finishing operation using an emission capture system and add-on control device other than a solvent recovery system for which you conduct liquid-liquid material balances according to § 63.4341(e)(5) or (f)(5) or § 63.4351(d)(5), you must include the information specified in paragraphs (c)(9)(i) through (v) of this section.

(iv) A statement of whether or not you developed and implemented the work practice plan required by § 63.4293.

(v) Before September 12, 2019, a statement of whether or not you developed the startup, shutdown, and malfunction plan required by § 63.4300(c). This statement is not

required on and after September 12, 2019.

■ 25. Section 63.4311 is amended by: ■ a. Revising paragraphs (a)(5) and (6) and (a)(7) introductory text;

 b. Redesignating paragraph (a)(7)(i) as (a)(7)(i)(A);

■ c. Adding new paragraph (a)(7)(i) introductory text;

 d. Redesignating paragraph (a)(7)(ii) as (a)(7)(i)(B) and revising it;

■ e. Redesignating paragraphs (a)(7)(iii) through (xv) as (a)(7)(i)(C) through (O), respectively;

f. Adding new paragraph (a)(7)(ii).

■ g. Revising paragraphs (a)(8) introductory text, (a)(8)(i), and (c) introductory text; and

h. Adding paragraphs (d) through (h). The revisions and additions read as follows:

§ 63.4311 What reports must I submit?

(a) * * *

(5) Deviations: Compliant material option. If you use the compliant material option, and there was a deviation from the applicable organic HAP content requirements in Table 1 to this subpart, the semiannual compliance report must contain the information in paragraph (a)(5)(i) or (ii) of this section, as applicable.

(i) Before September 12, 2019, the information in paragraph (a)(5)(i)(A)

through (D) of this section.

(A) Identification of each coating, printing, slashing, dyeing or finishing material applied that deviated from the emission limit and each thinning or cleaning material applied in web coating/printing operations that contained organic HAP, and the dates and time periods each was applied.

(B) The calculation of the organic HAP content using Equation 1 of § 63.4321 for each coating or printing material identified in paragraph (a)(5)(i)(A) of this section. You do not need to submit background data supporting this calculation (e.g., information provided by material suppliers or manufacturers, or test reports).

(C) The determination of mass fraction of organic HAP for each regulated material identified in paragraph (a)(5)(i)(A) of this section. You do not need to submit background data supporting this calculation (e.g., information provided by material suppliers or manufacturers, or test reports).

(D) A statement of the cause of each

deviation.

(ii) On and after September 12, 2019, the information in paragraphs (a)(5)(ii)(A) through (E) of this section.

(A) Identification of each coating, printing, slashing, dyeing or finishing material applied that deviated from the emission limit and each thinning or cleaning material applied in web coating/printing operations that contained organic HAP, and the date, time, and duration each was applied.

(B) The calculation of the organic HAP content using Equation 1 of § 63.4321 for each coating or printing material identified in paragraph (a)(5)(ii)(A) of this section. You do not need to submit background data supporting this calculation (e.g., information provided by material suppliers or manufacturers, or test

reports).

(C) The determination of mass fraction of organic HAP for each regulated material identified in paragraph (a)(5)(ii)(A) of this section. You do not need to submit background data supporting this calculation (e.g., information provided by material suppliers or manufacturers, or test reports).

(D) A statement of the cause of each deviation (including unknown cause, if

applicable).

(E) The number of deviations and, for each deviation, a list of the affected source or equipment, an estimate of the quantity of each regulated pollutant emitted over any emission limit in Table 1 to this subpart, and a description of the method used to estimate the emissions.

(6) Deviations: Emission rate without add-on controls option. If you use the emission rate without add-on controls option and there was a deviation from the applicable emission limit in Table 1 to this subpart, the semiannual compliance report must contain the information in paragraph (a)(6)(i) or (ii) of this section, as applicable.

(i) Before September 12, 2019, the information in paragraphs (a)(6)(i)(A)

through (C) of this section.

(A) The beginning and ending dates of each compliance period during which the organic HAP emission rate exceeded the applicable emission limit in Table 1 to this subpart.

(B) The calculations used to determine the organic HAP emission rate for the compliance period in which

the deviation occurred. You must submit the calculations for Equations 1, 1A and 1B, 2, and 3 in § 63.4331 for web coating/printing operations; and for Equations 4, 4A, 5, and 6 in § 63.4331 for dyeing/finishing operations; and if applicable, the calculation used to determine mass of organic HAP in waste materials according to § 63.4331(a)(4)(iii) or (b)(3)(ii); and, for dyeing/finishing operations, if applicable, the mass of organic HAP in wastewater streams calculation for Equation 7 in § 63.4331. You do not need to submit background data supporting these calculations (e.g., information provided by materials suppliers or manufacturers, or test reports).

(C) A statement of the cause of each

deviation.

(ii) On and after September 12, 2019, the information in paragraphs (a)(6)(ii)(A) through (D) of this section.

(A) The beginning and ending dates of each compliance period, during which the organic HAP emission rate exceeded the applicable emission limit in Table 1

to this subpart.

(B) The calculations used to determine the organic HAP emission rate for the compliance period in which the deviation occurred. You must submit the calculations for Equations 1, 1A and 1B, 2, and 3 in § 63.4331 for web coating/printing operations; and for Equations 4, 4A, 5, and 6 in § 63.4331 for dyeing/finishing operations; and if applicable, the calculation used to determine mass of organic HAP in waste materials according to § 63.4331(a)(4)(iii) or (b)(3)(ii); and, for dyeing/finishing operations, if applicable, the mass of organic HAP in wastewater streams calculation for Equation 7 in § 63.4331. You do not need to submit background data supporting these calculations (e.g., information provided by materials suppliers or manufacturers, or test

reports).
(C) A statement of the cause of each deviation (including unknown cause, if

applicable).

(D) The number of deviations, a list of the affected source or equipment, an estimate of the quantity of each regulated pollutant emitted over any emission limit in Table 1 to this subpart, and a description of the method used to estimate the emissions.

(7) Deviations: Add-on controls options. If you use one of the add-on controls options in § 63.4291(a) or (c) and there was a deviation from an emission limitation (including any periods when emissions bypassed the add-on control device and were diverted to the atmosphere), the semiannual

compliance report must contain the information in paragraph (a)(7)(i) or (ii) of this section, as applicable.

(i) Before September 12, 2019, the information in paragraphs (a)(7)(i)(A) through (O) of this section. This includes periods of startup, shutdown, and malfunction during which deviations occurred.

(B) If you use the emission rate option, the calculations used to determine the organic HAP emission rate for each compliance period in which a deviation occurred. You must submit the calculations that apply to you, including Equations 1, 1A, 1B, and 2 of § 63.4331 and Equations 1, 1A, 1B, 1C, 2, 3, 3A and 3B and 4 of § 63.4341 for web coating/printing operations; and Equations 4, 4A, 5, 6, and 7 of § 63.4331 and Equations 5, 5A, 5B, 6, 7, and 8 of § 63.4341 for dyeing/finishing operations. You do not need to submit the background data supporting these calculations (e.g., information provided by materials suppliers or manufacturers, or test reports).

(ii) On and after September 12, 2019, the information in paragraphs (a)(7)(ii)(A) through (M), (Ö), and (P) of this section if there was a deviation from the applicable emission limit in Table 1 to this subpart or the applicable operating limit(s) in Table 2 to this subpart (including any periods when emissions bypassed the add-on control device and were diverted to the atmosphere), and the information in paragraph (a)(7)(ii)(N) of this section if there was a deviation from the applicable work practice standards in § 63.4293(b).

(A) The beginning and ending dates of each compliance period during which the organic HAP emission rate exceeded the applicable emission limit in Table 1 to this subpart.

(B) If you use the emission rate option, the calculations used to determine the organic HAP emission rate for each compliance period in which a deviation occurred. You must submit the calculations that apply to you, including Equations 1, 1A, 1B, and 2 of § 63.4331 and Equations 1, 1A, 1B, 1C, 2, 3, 3A and 3B and 4 of § 63.4341 for web coating/printing operations; and Equations 4, 4A, 5, 6, and 7 of § 63.4331 and Equations 5, 5A, 5B, 6, 7, and 8 of § 63.4341 for dyeing/finishing operations. You do not need to submit the background data supporting these calculations (e.g., information provided by materials suppliers or manufacturers, or test reports).

(C) If you use the organic HAP overall control efficiency option, the calculations used to determine the organic HAP overall control efficiency for each compliance period in which a deviation occurred. You must submit the calculations that apply to you, including Equations 1, 1A, and 1B of § 63.4331; Equations 1, 1A, 1B, 1C, 2, 3, 3A, and 3B of § 63.4341; and Equation 1 of § 63.4351. You do not need to submit the background data supporting these calculations (e.g., test reports).

(D) The date and time that each malfunction of the capture system or add-on control devices started and

stopped.
(E) A brief description of the CPMS. (F) The date of the latest CPMS

certification or audit.

(G) For each instance that the CPMS was inoperative, except for zero (lowlevel) and high-level checks, the date, time, and duration that the CPMS was inoperative; the cause (including unknown cause) for the CPMS being inoperative; and descriptions of corrective actions taken.

(H) For each instance that the CPMS was out-of-control, as specified in § 63.8(c)(7), the date, time, and duration that the CPMS was out-of-control; the cause (including unknown cause) for the CPMS being out-of-control; and descriptions of corrective actions taken.

(I) The date, time, and duration of each deviation from an operating limit in Table 2 to this subpart, and the date, time, and duration of any bypass of the

add-on control device.

(J) A summary of the total duration of each deviation from an operating limit in Table 2 to this subpart and each bypass of the add-on control device during the semiannual reporting period and the total duration as a percent of the total source operating time during that

semiannual reporting period.
(K) A breakdown of the total duration of the deviations from the operating limits in Table 2 to this subpart and bypasses of the add-on control device during the semiannual reporting period into those that were due to control equipment problems, process problems, other known causes, and other unknown causes.

(L) A summary of the total duration of CPMS downtime during the semiannual reporting period and the total duration of CPMS downtime as a percent of the total source operating time during that

semiannual reporting period.
(M) A description of any changes in the CPMS, web coating/printing or dyeing/finishing operation, emission capture system, or add-on control device since the last semiannual reporting period.

(N) For deviations from the work practice standards, the number of deviations, and, for each deviation, a description of the deviation; the date, time, and duration of the deviation; and the actions you took to minimize emissions in accordance with § 63.4300(b). The description of the deviation must include a list of the affected sources or equipment for which the deviation occurred and the cause of the deviation (including unknown cause, if applicable).

(O) For deviations from an emission limit in Table 1 to this subpart or operating limit in Table 2 to this subpart, a statement of the cause of each deviation (including unknown cause, if

applicable).

(P) For each deviation from an emission limit in Table 1 to this subpart or operating limit in Table 2 to this subpart, a list of the affected sources or equipment for which a deviation occurred, an estimate of the quantity of each regulated pollutant emitted over any emission limit in Table 1 to this subpart, and a description of the method used to estimate the emissions.

(8) Deviations: Equivalent Emission Rate Option. If you use the equivalent emission rate option, and there was a deviation from the operating scenarios, as defined in § 63.4371, used to demonstrate initial compliance, the semiannual compliance report must contain the information in paragraphs (a)(8)(i) through (iv) of this section.

(i) Before September 12, 2019, the beginning and ending dates of each compliance period during which the deviation occurred. On and after September 12, 2019, the beginning and ending dates of each compliance period during which the deviation occurred, the number of deviations during the compliance period, and, for each deviation, the date, time, and duration of the deviation; a list of the affected sources or equipment; and a statement of the cause of the deviation (including an unknown cause, if applicable).

(c) Before September 12, 2019, if you use one of the add-on control options in § 63.4291(a) or (c) and you have a startup, shutdown, or malfunction during the semiannual reporting period, you must submit the reports specified in paragraphs (c)(1) and (2) of this section. The reports specified in paragraphs (c)(1) and (2) of this section are not required on and after September 12, 2019.

(d) Beginning no later than June 13, 2019, you must submit the results of the performance test required in paragraph

(b) of this section following the procedure specified in paragraphs (d)(1) hrough (3) of this section.

(1) For data collected using test methods supported by the EPA's Electronic Reporting Tool (ERT) as listed on the EPA's ERT website (https://www.epa.gov/electronicreporting-air-emissions/electronicreporting-tool-ert) at the time of the test, you must submit the results of the performance test to the EPA via the Compliance and Emissions Data Reporting Interface (CEDRI). The CEDRI interface can be accessed through the EPA's Central Data Exchange (CDX) (https://cdx.epa.gov/). Performance test data must be submitted in a file format generated through the use of the EPA's ERT or an alternate electronic file format consistent with the extensible markup language (XML) schema listed on the EPA's ERT website.

(2) For data collected using test methods that are not supported by the EPA's ERT as listed on the EPA's ERT website at the time of the test, you must submit the results of the performance test to the Administrator at the appropriate address listed in § 63.13, unless the Administrator agrees to or specifies an alternate reporting method.

(3) If you claim that some of the performance test information being submitted under paragraph (d)(1) of this section is confidential business information (CBI), you must submit a complete file generated through the use of the EPA's ERT or an alternate electronic file consistent with the XML schema listed on the EPA's ERT website, including information claimed to be CBI, on a compact disc, flash drive, or other commonly used electronic storage medium to the EPA. The electronic medium must be clearly marked as CBI and mailed to U.S. EPA OAPQS/CORE CBI Office, Attention: Group Leader, Measurement Policy Group, MD C404-02, 4930 Old Page Rd., Durham, NC 27703. The same ERT or alternate file with the CBI omitted must be submitted to the EPA via the EPA's CDX as described in paragraph (d)(1) of this section.

(e) Beginning on March 15, 2021, the owner or operator shall submit the initial notifications required in § 63.9(b) and the notification of compliance status required in § 63.9(h) and § 63.4310(c) to the EPA via CEDRI. The CEDRI interface can be accessed through the EPA's CDX (https://cdx.epa.gov). The owner or operator must upload to CEDRI an electronic copy of each applicable notification in portable document format (PDF). The applicable notification must be submitted by the deadline specified in this subpart,

regardless of the method in which the reports are submitted. Owners or operators who claim that some of the information required to be submitted via CEDRI is CBI shall submit a complete report generated using the appropriate form in CEDRI or an alternate electronic file consistent with the extensible markup language (XML) schema listed on the EPA's CEDRI website, including information claimed to be CBI, on a compact disc, flash drive, or other commonly used electronic storage medium to the EPA. The electronic medium shall be clearly marked as CBI and mailed to U.S. EPA/OAQPS/CORE CBI Office, Attention: Group Leader, Measurement Policy Group, MD C404-02, 4930 Old Page Rd., Durham, NC 27703. The same file with the CBI omitted shall be submitted to the EPA via the EPA's CDX as described earlier in this paragraph.

(f) Beginning on March 15, 2021, or once the reporting template has been available on the CEDRI website for 1 year, whichever date is later, the owner or operator shall submit the semiannual compliance report required in paragraph (a) of this section to the EPA via CEDRI. The CEDRI interface can be accessed through the EPA's CDX (https:// cdx.epa.gov). The owner or operator must use the appropriate electronic template on the CEDRI website for this subpart or an alternate electronic file format consistent with the XML schema listed on the CEDRI website (https:// www.epa.gov/electronic-reporting-airemissions/compliance-and-emissionsdata-reporting-interface-cedri). The date report templates become available will be listed on the CEDRI website. If the reporting form for the semiannual compliance report specific to this subpart is not available in CEDRI at the time that the report is due, you must submit the report to the Administrator at the appropriate addresses listed in § 63.13. Once the form has been available in CEDRI for 1 year, you must begin submitting all subsequent reports via CEDRI. The reports must be submitted by the deadlines specified in this subpart, regardless of the method in which the reports are submitted. Owners or operators who claim that some of the information required to be submitted via CEDRI is CBI shall submit a complete report generated using the appropriate form in CEDRI or an alternate electronic file consistent with the XML schema listed on the EPA's CEDRI website, including information claimed to be CBI, on a compact disc. flash drive, or other commonly used electronic storage medium to the EPA. The electronic medium shall be clearly

marked as CBI and mailed to U.S. EPA/OAQPS/CORE CBI Office, Attention: Group Leader, Measurement Policy Group, MD C404–02, 4930 Old Page Rd., Durham, NC 27703. The same file with the CBI omitted shall be submitted to the EPA via the EPA's CDX as described earlier in this paragraph.

(g) If you are required to electronically submit a report through CEDRI in the EPA's CDX, and due to a planned or actual outage of either the EPA's CEDRI or CDX systems within the period of time beginning 5 business days prior to the date that the submission is due, you will be or are precluded from accessing CEDRI or CDX and submitting a required report within the time prescribed, you may assert a claim of EPA system outage for failure to timely comply with the reporting requirement. You must submit notification to the Administrator in writing as soon as possible following the date you first knew, or through due diligence should have known, that the event may cause or caused a delay in reporting. You must provide to the Administrator a written description identifying the date, time and length of the outage; a rationale for attributing the delay in reporting beyond the regulatory deadline to the EPA system outage; describe the measures taken or to be taken to minimize the delay in reporting; and identify a date by which you propose to report, or if you have already met the reporting requirement at the time of the notification, the date you reported. In any circumstance, the report must be submitted electronically as soon as possible after the outage is resolved. The decision to accept the claim of EPA system outage and allow an extension to the reporting deadline is solely within

the discretion of the Administrator. (h) If you are required to electronically submit a report through CEDRI in the EPA's CDX and a force majeure event is about to occur, occurs, or has occurred or there are lingering effects from such an event within the period of time beginning 5 business days prior to the date the submission is due, the owner or operator may assert a claim of force majeure for failure to timely comply with the reporting requirement. For the purposes of this section, a force majeure event is defined as an event that will be or has been caused by circumstances beyond the control of the affected facility, its contractors, or any entity controlled by the affected facility that prevents you from complying with the requirement to submit a report electronically within the time period prescribed. Examples of such events are acts of nature (e.g. hurricanes, earthquakes, or floods), acts

of war or terrorism, or equipment failure or safety hazard beyond the control of the affected facility (e.g., large scale power outage). If you intend to assert a claim of force majeure, you must submit notification to the Administrator in writing as soon as possible following the date you first knew, or through due diligence should have known, that the event may cause or caused a delay in reporting. You must provide to the Administrator a written description of the force majeure event and a rationale for attributing the delay in reporting beyond the regulatory deadline to the force majeure event; describe the measures taken or to be taken to minimize the delay in reporting; and identify a date by which you propose to report, or if you have already met the reporting requirement at the time of the notification, the date you reported. In any circumstance, the reporting must occur as soon as possible after the force majeure event occurs. The decision to accept the claim of force majeure and allow an extension to the reporting deadline is solely within the discretion of the Administrator.

■ 26. Section 63.4312 is amended by revising paragraphs (i), (j) introductory text, and (j)(1) and (2) to read as follows:

§63.4312 What records must I keep?

(i) Before September 12, 2019, you must keep records of the date, time, and duration of each deviation. On and after September 12, 2019, for each deviation from an emission limitation reported under § 63.4311(a)(5) through (8), a record of the information specified in paragraphs (i)(1) through (4) of this section, as applicable.

(1) The date, time, and duration of the deviation, as reported under § 63.4311(a)(5) through (8).

(2) A list of the affected sources or equipment for which the deviation occurred and the cause of the deviation, as reported under § 63.4311(a)(5) through (8).

(3) An estimate of the quantity of each regulated pollutant emitted over any applicable emission limit in Table 1 to this subpart or any applicable operating limit in Table 2 to this subpart, and a description of the method used to calculate the estimate, as reported under § 63.4311(a)(5) through (8). If you use the equivalent emission rate option to comply with this subpart, a record of the applicable information specified in § 63.4311(a)(8)(ii) through (iv) satisfies the recordkeeping requirement in this paragraph (i)(3).

(4) A record of actions taken to minimize emissions in accordance with § 63.4300(b) and any corrective actions

taken to return the affected unit to its normal or usual manner of operation.

(j) If you use the emission rate with add-on controls option, the organic HAP overall control efficiency option, or the oxidizer outlet organic ĤAP concentration option, you must also keep the records specified in paragraphs (j)(1) through (8) of this section.

(1) Before September 12, 2019, for each deviation, a record of whether the deviation occurred during a period of startup, shutdown, or malfunction. The record in this paragraph (j)(1) is not required on and after September 12,

2019.

- (2) Before September 12, 2019, the records in § 63.6(e)(3)(iii) through (v) related to startup, shutdown, and malfunction. The records in this paragraph (j)(2) are not required on and after September 12, 2019.
- 27. Section 63.4313 is amended by revising paragraph (a) to read as follows:

§63.4313 In what form and for how long must I keep my records?

(a) Your records must be in a form suitable and readily available for expeditious review, according to § 63.10(b)(1). Where appropriate, the records may be maintained as electronic spreadsheets or as a database. Any records required to be maintained by this subpart that are in reports that were submitted electronically via the EPA's CEDRI may be maintained in electronic format. This ability to maintain electronic copies does not affect the requirement for facilities to make records, data, and reports available upon request to a delegated air agency or the EPA as part of an on-site compliance evaluation.

 28. Section 63.4321 is amended by revising paragraphs (e)(1)(i)(A), (e)(1)(ii) and (iv), and (e)(2)(i) to read as follows:

§ 63.4321 How do I demonstrate initial compliance with the emission limitations?

*

*

(1) * * * (i) * * *

(A) Count each organic HAP in Table 6 to this subpart that is measured to be present at 0.1 percent by mass or more and at 1.0 percent by mass or more for other compounds. For example, if toluene (not listed in Table 6 to this subpart) is measured to be 0.5 percent of the material by mass, you don't have to count it. Express the mass fraction of each organic HAP you count as a value truncated to no more than four places after the decimal point (e.g., 0.3791).

(ii) Method 24 in appendix A-7 of part 60. You may use Method 24 to determine the mass fraction of nonaqueous volatile matter and use that value as a substitute for mass fraction of organic HAP. As an alternative to using Method 24, you may use ASTM D2369-10 (R2015), "Test Method for Volatile Content of Coatings" (incorporated by reference, see § 63.14). For a multicomponent coating with reactive chemicals, you may use Method 24 or ASTM D2369–10 (R2015) on the coating as applied to determine the mass fraction of nonaqueous volatile matter and use that value as a substitute for the mass fraction of organic HAP determined from the sum of organic HAP in each component.

(iv) Information from the supplier or manufacturer of the material. You may rely on information other than that generated by the test methods specified in paragraphs (e)(1)(i) through (iii) of this section, such as manufacturer's formulation data, if it represents each organic HAP in Table 6 to this subpart that is present at 0.1 percent by mass or more and at 1.0 percent by mass or more for other compounds. For example, if toluene (not listed in Table 6 to this subpart) is 0.5 percent of the material by mass, you do not have to count it. If there is a disagreement between such information and results of a test conducted according to paragraphs (e)(1)(i) through (iii) of this section on coating, thinning, or cleaning material, then the test method results will take precedence. Information from the supplier or manufacturer of the printing, slashing, dyeing, or finishing material is sufficient for determining the mass fraction of organic HAP.

(2) * * *

(i) Method 24 in appendix A-7 of part 60. You may use Method 24 for determining the mass fraction of solids of coating materials. As an alternative to using Method 24, you may use ASTM D2369-10 (R2015), "Test Method for Volatile Content of Coatings' (incorporated by reference, see § 63.14).

29. Section 63.4340 is amended by revising the section heading and paragraph (b)(3) to read as follows:

§ 63.4340 By what date must I conduct initial performance tests and other initial compliance demonstrations?

(b) * * *

(3) You must complete the compliance demonstration for the initial compliance period according to the

requirements of § 63.4341. The initial compliance period begins on the applicable compliance date specified in § 63.4283 and ends on the last day of the 12th full month after the compliance date. The initial compliance demonstration includes the results of emission capture system and add-on control device performance tests conducted according to §§ 63.4360, 63.4361, and 63.4362; results of liquidliquid material balances conducted according to § 63.4341(e)(5) or (f)(5); calculations according to § 63.4341 and supporting documentation showing that during the initial compliance period the organic HAP emission rate was equal to or less than the applicable emission limit in Table 1 to this subpart; the operating limits established during the performance tests and the results of the continuous parameter monitoring required by § 63.4364; and documentation of whether you developed and implemented the work practice plan required by § 63.4293.

30. Section 63.4341 is amended: a. In paragraph (e)(4) introductory text by removing the three sentences after the subject heading and adding four

sentences in their place; ■ b. By revising paragraph (e)(5)(iii);

and

c. In paragraph (f)(4) introductory text by removing the first four sentences after the subject heading and adding four new sentences in their place.

The additions and revision read as follows:

§ 63.4341 How do I demonstrate initial compliance?

(4) * * * For each controlled web coating/printing operation using an emission capture system and add-on control device other than a solvent recovery system for which you conduct liquid-liquid material balances, calculate the organic HAP emissions reductions using Equation 1 of this section. The equation applies the emission capture system efficiency and add-on control device efficiency to the mass of organic HAP contained in the coating, printing, thinning, and cleaning materials applied in the web coating/ printing operation served by the emission capture system and add-on control device during the compliance period. For any period of time a deviation specified in § 63.4342(c) or (d) occurs in the controlled web coating/ printing operation, then you must assume zero efficiency for the emission capture system and add-on control device. Equation 1 of this section treats the coating, printing, thinning, and

cleaning materials applied during such a deviation as if they were used on an uncontrolled web coating/printing operation for the time period of the deviation. * * *

* * * * * * (5) * * *

(iii) Determine the mass fraction of volatile organic matter for each coating, printing, cleaning, and thinning material applied in the web coating/ printing operation controlled by the solvent recovery system during the compliance period, kg volatile organic matter per kg coating, printing, cleaning, and thinning material. You may determine the volatile organic matter mass fraction using Method 24 in appendix A-7 of part 60, ASTM D2369-10 (R2015), "Test Method for Volatile Content of Coatings" (incorporated by reference, see § 63.14), or an EPA approved alternative method. Alternatively, you may use information provided by the manufacturer or supplier of the coating or printing material. In the event of any inconsistency between information provided by the manufacturer or supplier and the results of Method 24, ASTM D2369-10 (R2015), or an approved alternative method, the test method results will govern.

(f) * * *

- (4) * * * For each controlled dyeing/ finishing operation using an emission capture system and add-on control device other than a solvent recovery system for which you conduct liquidliquid material balances, calculate the organic HAP emissions reductions using Equation 5 of this section. The equation applies the emission capture system efficiency and add-on control device efficiency to the mass of organic HAP contained in the dyeing and finishing materials applied in the dyeing/ finishing operation served by the emission capture system and add-on control device during the compliance period. For any period of time a deviation specified in § 63.4342(c) or (d) occurs in the controlled dyeing/ finishing operation, then you must assume zero efficiency for the emission capture system and add-on control device. Equation 5 of this section treats the dyeing and finishing materials applied during such a deviation as if they were applied on an uncontrolled dyeing/finishing operation for the time period of the deviation. *
- 31. Section 63.4342 is amended by revising the section heading and paragraph (c) introductory text, adding

paragraph (c)(3), and revising paragraphs (f) and (h) to read as follows:

§63.4342 How do I conduct periodic performance tests and demonstrate continuous compliance with the emission limitations?

(c) You must demonstrate continuous compliance with each operating limit required by § 63.4292 that applies to you, as specified in Table 2 to this subpart, and you must conduct periodic performance tests as specified in paragraph (c)(3) of this section.

(3) Except for solvent recovery systems for which you conduct liquidliquid material balances according to § 63.4351(d)(5), within 5 years following the previous performance test, you must conduct according to the procedures in §§ 63.4360, 63.4361, and 63.4362 a periodic performance test of each capture system and add-on control device used, and you must establish the operating limits required by § 63.4292. You must conduct the first periodic performance test and establish the operating limits required by § 63.4292 before March 15, 2022, unless you are already required to complete periodic performance tests as a requirement of renewing your facility's operating permit under 40 CFR part 70 or 40 CFR part 71 and have conducted a performance test on or after March 15, 2017. Thereafter you must conduct a performance test no later than 5 years following the previous performance test. Operating limits must be confirmed or reestablished during each performance

(f) As part of each semiannual compliance report required in § 63.4311, you must identify the coating/printing and dyeing/finishing operation(s) for which you use the emission rate with add-on controls option. If there were no deviations from the applicable emission limitations in §§ 63.4290, 63.4292, and 63.4293, you must submit a statement that, as appropriate, the web coating/ printing operations or the dyeing/ finishing operations were in compliance with the emission limitations during the reporting period because the organic HAP emission rate for each compliance period was less than or equal to the applicable emission limit in Table 1 to this subpart, and you achieved the operating limits required by § 63.4292 and the work practice standards required by § 63.4293 during each compliance period.

test.

(h) Before September 12, 2019, consistent with §§ 63.6(e) and 63.7(e)(1),

deviations that occur during a period of startup, shutdown, or malfunction of the emission capture system, add-on control device, or web coating/printing or dyeing/finishing operation that may affect emission capture or control device efficiency are not violations if you demonstrate to the Administrator's satisfaction that you were operating in accordance with § 63.6(e)(1). The Administrator will determine whether deviations that occur during a period of startup, shutdown, or malfunction are violations according to the provisions in § 63.6(e). On and after September 12, 2019, as specified in § 63.4300(b), at all times, the owner or operator must operate and maintain any affected source, including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions, and determination of whether a source is operating in compliance with operation and maintenance requirements will be based on information available to the Administrator.

■ 32. Section 63.4350 is amended by revising paragraphs (a)(3) and (b)(3) to read as follows:

§ 63.4350 By what date must I conduct performance tests and other initial compliance demonstrations?

(a) * * *

(3) You must complete the compliance demonstration for the initial compliance period according to the requirements of § 63.4351. The initial compliance period begins on the applicable compliance date specified in § 63.4283 and ends on the last day of the first full month after the compliance date, or the date you conduct the performance tests of the emission capture systems and add-on control devices, or initiate the first liquid-liquid material balance for a solvent recovery system, whichever is later. The initial compliance demonstration includes the results of emission capture system and add-on control device performance tests conducted according to §§ 63.4360, 63.4361, and 63.4362; results of liquidliquid material balances conducted according to § 63.4351(d)(5); calculations according to § 63.4351 and supporting documentation showing that during the initial compliance period either the organic HAP overall control efficiency was equal to or greater than the applicable overall control efficiency limit in Table 1 to this subpart or the oxidizer outlet organic HAP concentration was no greater than 20 parts per million by volume (ppmv) on

a dry basis; the operating limits established during the performance tests and the results of the continuous parameter monitoring required by § 63.4364; and documentation of whether you developed and implemented the work practice plan required by § 63.4293.

(3) You must complete the compliance demonstration for the initial compliance period according to the requirements of § 63.4351. The initial compliance period begins on the applicable compliance date specified in § 63.4283 and ends on the last day of the first full month after the compliance date. The initial compliance demonstration includes the results of emission capture system and add-on control device performance tests conducted according to §§ 63.4360, 63.4361, and 63.4362; results of liquidliquid material balances conducted according to § 63.4351(d)(5); calculations according to § 63.4351 and supporting documentation showing that during the initial compliance period the organic HAP overall control efficiency was equal to or greater than the applicable organic HAP overall control efficiency limit in Table 1 to this subpart or the oxidizer outlet organic HAP concentration was no greater than 20 ppmv on a dry basis and the efficiency of the capture system was 100 percent; the operating limits established during the performance tests and the results of the continuous parameter monitoring required by §63.4364; and documentation of whether you developed and implemented the work practice plan required by § 63.4293. ■ 33. Section 63.4351 is amended by revising paragraphs (a), (d)(4) introductory text, (d)(5)(iii), and (e) introductory text to read as follows:

§ 63.4351 How do I demonstrate initial compliance?

(a) You may use the organic HAP overall control efficiency option or the oxidizer outlet organic HAP concentration option for any individual web coating/printing operation, for any group of web coating/printing operations in the affected source, or for all of the web coating/printing operations in the affected source. You may include both controlled and uncontrolled web coating/printing operations in a group for which you use the organic HAP overall control efficiency option. You must use either the compliant material option, the emission rate without add-on controls option, or the emission rate with add-on controls option for any web coating/

printing operation(s) in the affected source for which you do not use either the organic HAP overall control efficiency option or the oxidizer outlet organic HAP concentration option. To demonstrate initial compliance, any web coating/printing operation for which you use the organic HAP overall control efficiency option must meet the applicable organic HAP overall control efficiency limitations in Table 1 to this subpart according to the procedures in paragraph (d) of this section. Any web coating/printing operation for which you use the oxidizer outlet organic HAP concentration option must meet the 20 ppmv on a dry basis limit and achieve 100 percent capture efficiencies according to the procedures in paragraph (e) of this section. To demonstrate initial compliance with either option, you also must meet the applicable operating limits in § 63.4292 according to the procedures in paragraph (b) of this section and the work practice standards in § 63.4293 according to the procedures in paragraph (c) of this section. When calculating the organic HAP overall control efficiency according to this section, do not include any coating, printing, thinning, or cleaning materials applied on web coating/printing operations for which you use the compliant material option, the emission rate without add-on controls option, the emission rate with add-on controls option, or the oxidizer outlet organic HAP concentration option. You do not need to redetermine the mass of organic HAP in coating, printing, thinning, or cleaning materials that have been reclaimed onsite and reused in web coating/printing operation(s) for which you use the organic HAP overall control efficiency option.

(d) * * *

(4) Calculate the organic HAP emissions reductions for controlled web coating/printing operations not using liquid-liquid material balance. For each controlled web coating/printing operation using an emission capture system and add-on control device other than a solvent recovery system for which you conduct liquid-liquid material balances, calculate the organic HAP emissions reductions using Equation 1 of § 63.4341. The equation applies the emission capture system efficiency and add-on control device efficiency to the mass of organic HAP contained in the coating, printing, thinning, and cleaning materials applied in the web coating/printing operation served by the emission capture system and add-on control device during the

compliance period. For any period of time a deviation specified in § 63.4352(c) or (d) occurs in the controlled web coating/printing operation, then you must assume zero efficiency for the emission capture system and add-on control device. Equation 1 of § 63.4341 treats the coating, printing, thinning, and cleaning materials applied during such a deviation as if they were applied on an uncontrolled web coating/printing operation for the time period of the deviation.

(5) * * *

(iii) Determine the mass fraction of volatile organic matter for each coating and printing material applied in the web coating/printing operation controlled by the solvent recovery system during the compliance period, kg volatile organic matter per kg coating and printing material. You may determine the volatile organic matter mass fraction using Method 24 in appendix A-7 of part 60, ASTM D2369-10 (R2015), "Test Method for Volatile Content of Coatings" (incorporated by reference, see § 63.14), or an EPA approved alternative method. Alternatively, you may use information provided by the manufacturer or supplier of the coating or printing material. In the event of any inconsistency between information provided by the manufacturer or supplier and the results of Method 24, ASTM D2369-10 (R2015), or an approved alternative method, the test method results will govern.

(e) Compliance with oxidizer outlet organic HAP concentration limit. You must follow the procedures in paragraphs (e)(1) through (3) of this section to demonstrate compliance with the oxidizer outlet organic ĤAP concentration limit of no greater than 20 ppmv on a dry basis.

34. Section 63.4352 is amended by revising paragraph (h) to read as follows:

§ 63.4352 How do I demonstrate continuous compliance with the emission limitations?

(h) Before September 12, 2019, consistent with §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction of the emission capture system, add-on control device, or web coating/printing operation that may affect emission capture or control device efficiency are not violations if you demonstrate to the Administrator's satisfaction that you

were operating in accordance with § 63.6(e)(1). The Administrator will determine whether deviations that occur during a period of startup, shutdown, or malfunction are violations according to the provisions in § 63.6(e). On and after September 12, 2019, as specified in \S 63.4300(b), at all times, the owner or operator must operate and maintain any affected source, including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions, and determination of whether a source is operating in compliance with operation and maintenance requirements will be based on information available to the Administrator.

■ 35. Section 63.4360 is amended by revising paragraphs (a) introductory text and (a)(1) to read as follows:

§ 63.4360 What are the general requirements for performance tests?

(a) You must conduct each performance test required by § 63.4340 or § 63.4350 according to the requirements in this section, unless you obtain a waiver of the performance test according to the provisions in § 63.7(h).

(1) Representative web coating/ printing or dyeing/finishing operation operating conditions. You must conduct the performance test under representative operating conditions for the web coating/printing or dyeing/ finishing operation. Operations during periods of startup, shutdown, or nonoperation do not constitute representative conditions for purposes of conducting a performance test. The owner or operator may not conduct performance tests during periods of malfunction. You must record the process information that is necessary to document operating conditions during the test and explain why the conditions represent normal operation. Upon request, you must make available to the Administrator such records as may be necessary to determine the conditions of performance tests.

■ 36. Section 63.4362 is amended by revising paragraphs (a)(1) through (4) and (b) introductory text to read as follows:

§ 63.4362 How do I determine the add-on control device emission destruction or removal efficiency?

(a) * * *

(1) Use Method 1 or 1A in appendix A-1 of part 60, as appropriate, to select

sampling sites and velocity traverse points.

(2) Use Method 2, 2A, 2C, 2D, or 2F in appendix A-1, or Method 2G in appendix A-2, of part 60, as appropriate, to measure gas volumetric flow rate.

(3) Use Method 3, 3A, or 3B in appendix A of part 60, as appropriate, for gas analysis to determine dry molecular weight. You may also use as an alternative to Method 3B, the manual method for measuring the oxygen, carbon dioxide, and carbon monoxide content of exhaust gas in ANSI/ASME, PTC 19.10–1981, "Flue and Exhaust Gas Analyses [Part 10, Instruments and Apparatus]" (incorporated by reference, see § 63.14).

(4) Use Method 4 in appendix A of part 60 to determine stack gas moisture.

(b) Measure the volatile organic matter concentration as carbon at the inlet and outlet of the add-on control device simultaneously, using Method 25 or 25A in appendix A-7 of part 60. If you are demonstrating compliance with the oxidizer outlet organic HAP concentration limit, only the outlet volatile organic matter concentration must be determined. The outlet volatile organic matter concentration is determined as the average of the three test runs. You may use Method 18 in appendix A-6 of part 60 to subtract methane emissions from measured volatile organic matter concentration as carbon.

■ 37. Section 63.4364 is amended by: ■ a. Revising paragraphs (a)(6) through (8) and (c) introductory text;

■ b. Redesignating paragraphs (c)(i) through (iii) as (c)(1) through (3), respectively; and

 c. Revising newly redesignated paragraph (c)(1).
 The revisions read as follows:

§ 63.4364 What are the requirements for CPMS installation, operation, and maintenance?

(a) * * *

(6) At all times, you must maintain the monitoring system in accordance with § 63.4300(b) and in proper working order including, but not limited to, keeping readily available necessary parts for routine repairs of the monitoring equipment.

(7) Before September 12, 2019, except for monitoring malfunctions, associated repairs, or required quality assurance or control activities (including calibration checks or required zero and span adjustments), you must conduct all monitoring at all times that the unit is

operating. On and after September 12, 2019, you must operate the CPMS and collect emission capture system and add-on control device parameter data at all times in accordance with § 63.4300(b). Data recorded during monitoring malfunctions, associated repairs, out-of-control periods, or required quality assurance or control activities shall not be used for purposes of calculating the emissions concentrations and percent reductions specified in Table 1 to this subpart. You must use all the data collected during all other periods in assessing compliance of the control device and associated control system. A monitoring malfunction is any sudden, infrequent, not reasonably preventable failure of the monitoring system to provide valid data. Monitoring failures that are caused in part by poor maintenance or careless operation are not malfunctions.

(8) Except for periods of required quality assurance or control activities, any averaging period during which the CPMS fails to operate and record data continuously as required by paragraph (a)(1) of this section, or during which generated data cannot be included in calculating averages as specified in paragraph (a)(7) of this section, constitutes a deviation, and you must notify the Administrator in accordance

with § 63.4311(a).

(c) Oxidizers. If you are using an oxidizer to comply with the emission standards, you must comply with paragraphs (c)(1) through (3) of this section.

(1) Install, calibrate, maintain, and operate temperature monitoring equipment according to the manufacturer's specifications. The calibration of the chart recorder, data logger, or temperature indicator must be verified every 3 months or the chart recorder, data logger, or temperature indicator must be replaced. A thermocouple is considered part of the temperature indicator for purposes of performing periodic calibration and verification checks.

■ 38. Section 63.4371 is amended by revising the definition of "Deviation" to read as follows:

§ 63.4371 What definitions apply to this subpart?

Deviation means:

* *

(1) Before September 12, 2019, any instance in which an affected source subject to this subpart or an owner or operator of such a source:

 (i) Fails to meet any requirement or obligation established by this subpart including but not limited to any emission limit, or operating limit, or work practice standard;

- (ii) Fails to meet any term or condition that is adopted to implement an applicable requirement in this subpart and that is included in the operating permit for any affected source required to obtain such a permit; or
- (iii) Fails to meet any emission limit, or operating limit, or work practice standard in this subpart during startup, shutdown, or malfunction regardless of

whether or not such failure is permitted by this subpart; and

(2) On and after September 12, 2019, any instance in which an affected source subject to this subpart or an owner or operator of such a source:

(i) Fails to meet any requirement or obligation established by this subpart including but not limited to any emission limit, or operating limit, or work practice standard; or (ii) Fails to meet any term or

(ii) Fails to meet any term or condition that is adopted to implement an applicable requirement in this subpart and that is included in the operating permit for any affected source required to obtain such a permit.

No organic HAP means no organic HAP in Table 5 to this subpart is present at 0.1 percent by mass or more and no organic HAP not listed in Table 5 to this subpart is present at 1.0 percent by mass or more. The organic HAP content of a regulated material is determined according to § 63.4321(e)(1).

■ 39. Table 3 to subpart OOOO of part 63 is revised to read as follows:

TABLE 3 TO SUBPART OOOO OF PART 63—APPLICABILITY OF GENERAL PROVISIONS TO SUBPART OOOO [You must comply with the applicable General Provisions requirements according to the following table:]

Citation	Subject	Applicable to subpart OOOO	Explanation
§ 63.1(a)(1)–(12)	General Applicability	Yes	
§ 63.1(b)(1)–(3)	Initial Applicability Determination	Yes	Applicability to subpart OOOO is also specified in § 63.4281.
§ 63.1(c)(1) § 63.1(c)(2)–(3)	Applicability After Standard Established Applicability of Permit Program for Area Sources.	Yes	Area sources are not subject to subpart OOOO.
§ 63.1(c)(4)–(5)	Extensions and Notifications	Yes	
§ 63.1(e)	Applicability of Permit Program Before Relevant Standard is Set.	Yes	,
§ 63.2	Definitions	Yes	Additional definitions are specified in § 63.4371.
§ 63.3(a)-(c)	Units and Abbreviations	Yes	
§ 63.4(a)(1)–(5)	Prohibited Activities	Yes	
§ 63.4(b)–(c)	Circumvention/Severability	Yes	
§ 63.5(a)	Construction/Reconstruction	Yes	
§ 63.5(b)(1)–(6)	Requirements for Existing, Newly Constructed, and Reconstructed Sources.	Yes	
§ 63.5(d)	Application for Approval of Construction/ Reconstruction.	Yes	
§ 63.5(e)	Approval of Construction/Reconstruction	Yes	
§ 63.5(f)	Approval of Construction/Reconstruction Based on Prior State Review.	Yes	
§ 63.6(a)	Compliance With Standards and Mainte- nance Requirements—Applicability.	Yes	
§ 63.6(b)(1)–(7)		Yes	Section 63.4283 specifies the compliance dates.
§ 63.6(c)(1)–(5)		Yes	Section 63.4283 specifies the compliance dates.
§ 63.6(e)(1)(i)	Operation and Maintenance	Yes, before September 12, 2019 No, on and after Sep- tember 12, 2019.	See §63.4300(b) for general duty require ment.
§ 63.6(e)(1)(ii)	Operation and Maintenance	Yes, before September 12, 2019 No, on and after Sep-	
		tember 12, 2019.	
§ 63.6(e)(1)(iii) § 63.6(e)(3)	Operation and Maintenance	Yes, before September	
		12, 2019 No, on and after September 12, 2019.	
§ 63.6(f)(1)	Compliance Except During Startup, Shut-down, and Malfunction.	Yes, before September 12, 2019	
		No, on and after September 12, 2019.	
§ 63.6(f)(2)-(3)	Methods for Determining Compliance	Yes	
§ 63.6(g)(1)–(3)		Yes	
§ 63.6(h)			Subpart OOOO does not establish opaci standards and does not require continuous opacity monitoring system (COMS).
0.00.063/43. (4.6)	Extension of Compliance	Ves	
963.6(1)(1)–(16)	. I Extension of Compliance		P ₁ :

TABLE 3 TO SUBPART OOOO OF PART 63—APPLICABILITY OF GENERAL PROVISIONS TO SUBPART OOOO—Continued [You must comply with the applicable General Provisions requirements according to the following table:]

Citation	Subject	Applicable to subpart OOOO	Explanation
§ 63.6(j)	Presidential Compliance Exemption	Yes	
§ 63.7(a)(1)	Performance Test Requirements—Applica- bility.	Yes	Applies to all affected sources. Additional requirements for performance testing are specified in §§ 63.4360, 63.4361 and 63.4362.
	Performance Test Requirements—Dates		 Applies only to performance tests for cap- ture system and control device efficiency at sources using these to comply with the standard.
	Performance Tests Required by the Administrator.		
§ 63.7(b)–(d)	tion, Quality Assurance, Facilities Nec- essary for Safe Testing, Conditions Dur- ing Test.		 Applies only to performance tests for cap- ture system and control device efficiency at sources using these to comply with the standard.
§63.7(e)(1)	Conduct of performance tests	Yes, before September 12, 2019 No, on and after Sep- tember 12, 2019.	See § 63.4360.
§ 63.7(e)(2)–(4)	Conduct of performance tests	Yes	
§ 63.7(f)	Performance Test Requirements—Use of Alternative Test Method.	Yes	
§ 63.7(g)–(h)	Analysis, Recordkeeping, Waiver of Test.	Yes	Applies only to performance tests for cap- ture system and add-on control device efficiency at sources using these to comply with the standards.
§ 63.8(a)(1)–(3)	Monitoring Requirements—Applicability	Yes	Applies only to monitoring of capture sys- tem and add-on control device efficiency at sources using these to comply with the standards. Additional requirements
§ 63.8(a)(4)	Additional Monitoring Requirements		for monitoring are specified in § 63.4364. Subpart OOOO does not have monitoring requirements for flares.
63.8(b)	Conduct of Monitoring	Yes	
§ 63.8(c)(1)	Continuous Monitoring Systems (CMS) Operation and Maintenance.	Yes, before September 12, 2019. No, on and after September 12, 2019.	Section 63.4364 specifies the require- ments for the operation of CMS for cap- ture systems and add-on control devices at sources using these to comply.
63.8(c)(2)–(3)	CMS Operation and Maintenance	Yes	Applies only to monitoring of capture system and add-on control device efficiency at sources using these to comply with the standards. Additional requirements for CMS operations and maintenance are specified in § 63.4364.
63.8(c)(4)	CMS	No	Section 63.4364 specifies the requirements for the operation of CMS for capture systems and add-on control devices at sources using these to comply.
63.8(c)(5)	COMS	No	Subpart OOOO does not have opacity or visible emission standards,
		No	Section 63.4364 specifies the require- ments for monitoring systems for cap- ture systems and add-on control devices at sources using these to comply.
63.8(c)(7) 63.8(c)(8)		YesNo	Section 63.4311 requires reporting of CMS
1	formance Evaluation.	No	out-of-control periods. Subpart OOOO does not require the use of CEMS.
	Use of an Alternative Monitoring Method	Yes	Subpart OOOO does not require the use
63.8(g)(1)–(5)	Data Reduction	No	of CEMS. Sections 63.4363 and 63.4364 specify
63.9(a)		Yes	monitoring data reduction. Subpart OOOO provides 1 year for an ex-
,			isting source to submit an initial notifica-

PCL XL error Error: Operator: Position:

ExtraData ReadImage 7730

9590

ENVIRONMENTAL PROTECTION AGENCY

40 CFR Part 63

[EPA-HQ-OAR-2017-0668, EPA-HQ-OAR-2017-0669, EPA-HQ-OAR-2017-0670; FRL-9988-80-OAR]

RIN 2060-AT72

National Emission Standards for **Hazardous Air Pollutants: Surface** Coating of Large Appliances; Printing, Coating, and Dyeing of Fabrics and Other Textiles; and Surface Coating of Metal Furniture Residual Risk and **Technology Reviews**

AGENCY: Environmental Protection Agency (EPA).

ACTION: Final rule.

SUMMARY: The Environmental Protection Agency (EPA) is taking final action on the residual risk and technology reviews (RTRs) conducted for the Surface Coating of Large Appliances; the Printing, Coating, and Dyeing of Fabrics and Other Textiles; and the Surface Coating of Metal Furniture source categories regulated under national emission standards for hazardous air pollutants (NESHAP). In addition, we are taking final action addressing emissions during periods of startup, shutdown, and malfunction (SSM); electronic reporting for performance test results and compliance reports; the addition of EPA Method 18 and updates to several measurement methods; and the addition of requirements for periodic performance testing. Additionally, several miscellaneous technical amendments will be made to improve the clarity of the rule requirements. We are making no revisions to the numerical emission limits based on these risk analyses or technology reviews.

DATES: This final rule is effective on March 15, 2019. The incorporation by reference of certain publications listed in this rule is approved by the Director of the Federal Register as of March 15,

ADDRESSES: The EPA has established dockets for this action under Docket ID Nos. EPA-HQ-OAR-2017-0668 for 40 Code of Federal Regulations (CFR) part 63, subpart OOOO, Printing, Coating, and Dyeing of Fabrics and Other Textiles; EPA-HQ-OAR-2017-0669 for 40 CFR part 63, subpart RRRR, Surface Coating of Metal Furniture; or EPA-HQ-OAR-2017-0670, for 40 CFR part 63, subpart NNNN, Surface Coating of Large Appliances, as applicable. All documents in the docket are listed on the https://www.regulations.gov

website. Although listed in the index, some information is not publicly available, e.g., confidential business information or other information whose disclosure is restricted by statute. Certain other material, such as copyrighted material, is not placed on the internet and will be publicly available only in hard copy form. Publicly available docket materials are available either electronically through https://www.regulations.gov, or in hard copy at the EPA Docket Center, EPA WĴČ West Building, Room Number 3334, 1301 Constitution Ave. NW, Washington, DC. The Public Reading Room hours of operation are 8:30 a.m. to 4:30 p.m. Eastern Standard Time (EST), Monday through Friday. The telephone number for the Public Reading Room is (202) 566-1744, and the telephone number for the Docket Center is (202) 566-1742.

FOR FURTHER INFORMATION CONTACT: For questions about the final rule for the Surface Coating of Large Appliances source category, contact Ms. Kim Teal, Minerals and Manufacturing Group, Sector Policies and Programs Division (Mail Code D243-04), Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, North Carolina 27711; telephone number: (919) 541-5580; fax number: (919) 541-4991; and email address: teal.kim@epa.gov.

For questions about the final rule for the Printing, Coating, and Dyeing of Fabrics and Other Textiles source category, contact Ms. Paula Hirtz, Minerals and Manufacturing Group, Sector Policies and Programs Division (Mail Code D243–04), Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, North Carolina 27711; telephone number: (919) 541-2618; fax number: (919) 541-4991; and email address: hirtz.paula@epa.gov.

For questions about the final rule for the Surface Coating of Metal Furniture source category, contact Ms. J. Kaye Whitfield, Minerals and Manufacturing Group, Sector Policies and Programs Division (Mail Code D243-04), Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, North Carolina 27711; telephone number: (919) 541-2509; fax number: (919) 541-4991; and email

address: whitfield.kaye@epa.gov. For specific information regarding the risk modeling methodology, contact Mr. Chris Sarsony, Health and Environmental Impacts Division (C539-

02), Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711; telephone number: (919) 541-4843; fax number: (919) 541-0840; and email address: sarsony.chris@epa.gov.

For information about the applicability of the NESHAP to a particular entity, contact Mr. John Cox. Office of Enforcement and Compliance Assurance, U.S. Environmental Protection Agency, EPA WJC South Building (Mail Code 2221A), 1200 Pennsylvania Avenue NW, Washington, DC 20460; telephone number: (202) 564-1395; and email address: cox.john@

SUPPLEMENTARY INFORMATION:

Preamble acronyms and abbreviations. We use multiple acronyms and terms in this preamble. While this list may not be exhaustive, to ease the reading of this preamble and for reference purposes, the EPA defines the following terms and acronyms here:

ASTM—ASTM International CAA—Clean Air Act CDX—Central Data Exchange

CEDRI—Compliance and Emissions Data Reporting Interface

CFR—Code of Federal Regulations CRA—Congressional Review Act

EPA-Environmental Protection Agency

ERT—Electronic Reporting Tool

FR-Federal Register gal--gallon

HAP—hazardous air pollutant(s) HCl—hydrochloric acid

HF-hydrogen fluoride

HI-hazard index

HQ-hazard quotient

HQREL—hazard quotient recommended

exposure limit

HVLP-high-volume, low-pressure

IBR—incorporation by reference ICR—Information Collection Request

kg-kilogram

km—kilometer

lb—pound

MAĈT-maximum achievable control technology

MIR—maximum individual risk NAICS—North American Industry

Classification System NESHAP—national emission standards for

hazardous air pollutants NTTAA-National Technology Transfer and

Advancement Act OAQPS—Office of Air Quality Planning and

Standards OMB-Office of Management and Budget

OSHA—Occupational Safety and Health Administration

PB-HAP-hazardous air pollutants known to be persistent and bioaccumulative in the environment

ppmv-parts per million by volume PRA—Paperwork Reduction Act RFA-Regulatory Flexibility Act

RTR—residual risk and technology review SSM-startup, shutdown, and malfunction TOSHI—target organ-specific hazard index tpy—tons per year UMRA—Unfunded Mandates Reform Act VOC—volatile organic compound

Background information. On September 12, 2018, the EPA proposed revisions to the Surface Coating of Large Appliances; the Printing, Coating, and Dyeing of Fabrics and Other Textiles (Fabrics); and the Surface Coating of Metal Furniture NESHAP, based on our RTR. In this action, we are finalizing decisions and revisions for the rules. We summarize some of the more significant comments we timely received regarding the proposed rule and provide our responses in this preamble. A summary of all other public comments on the proposed rules and the EPA's responses to those comments are available in "Summary of Public Comments and Responses for the Risk and Technology Reviews for the Surface Coating of Large Appliances; the Printing, Coating, and Dyeing of Fabrics and Other Textiles; and the Surface Coating of Metal Furniture," in Docket ID Nos. EPA-HQ-OAR-2017-0668, EPA-HQ-OAR-2017-0669, and EPA-HQ-OAR-2017-0670. A "track changes" version of the regulatory language that incorporates the changes in this action is available in the docket for each subpart.

Organization of this document. The information in this preamble is organized as follows:

- I. General Information
 - A. Does this action apply to me?
 - B. Where can I get a copy of this document and other related information?
 - C. Judicial Review and Administrative Reconsideration

- II. Background
- A. What is the statutory authority for this action?
- B. What are the source categories and how does the NESHAP regulate its HAP emissions?
- C. What changes did we propose for the source categories in our September 12, 2016, RTR proposal?
- III. What is included in these final rules?
- A. What are the final rule amendments based on the risk review for the Surface Coating of Large Appliances; Printing, Coating, and Dyeing of Fabrics and Other Textile; and Surface Coating of Metal Furniture source categories?
- B. What are the final rule amendments based on the technology review for the source categories?
- C. What are the final rule amendments addressing emissions during periods of SSM?
- D. What other changes have been made to the NESHAP?
- E. What are the effective and compliance dates of the standards?
- F. What are the requirements for submission of performance test data to the EPA?
- IV. What is the rationale for our final decisions and amendments for these three surface coating source categories?
 - A. Residual Risk Reviews
 - B. Technology Reviews
 - C. Ongoing Emissions Compliance Demonstrations
- D. Work Practice During Periods of Malfunction
- V. Summary of Cost, Environmental, and Economic Impacts and Additional Analyses Conducted
 - A. What are the affected facilities?
- B. What are the air quality impacts?
- C. What are the cost impacts?
- D. What are the economic impacts?

- E. What are the benefits?
- F. What analysis of environmental justice did we conduct?
- G. What analysis of children's environmental health did we conduct?
- VI. Statutory and Executive Order Reviews A. Executive Orders 12866: Regulatory Planning and Review and Executive Order 13563: Improving Regulation and
 - Regulatory Review
 B. Executive Order 13771: Reducing
 Regulations and Controlling Regulatory
 Costs
 - C. Paperwork Reduction Act (PRA)
 - D. Regulatory Flexibility Act (RFA)
 - E. Unfunded Mandates Reform Act (UMRA)
 - F. Executive Order 13132: Federalism
 - G. Executive Order 13175: Consultation and Coordination With Indian Tribal Governments
 - H. Executive Order 13045: Protection of Children From Environmental Health Risks and Safety Risks
 - I. Executive Order 13211: Actions Concerning Regulations That Significantly Affect Energy Supply, Distribution, or Use
 - J. National Technology Transfer and Advancement Act (NTTAA) and 1 CFR Part 51
 - K. Executive Order 12898: Federal Actions To Address Environmental Justice in Minority Populations and Low-Income Populations
- L. Congressional Review Act (CRA)

I. General Information

A. Does this action apply to me?

Regulated entities. Categories and entities potentially regulated by this action are shown in Table 1 of this preamble.

TABLE 1-NESHAP AND INDUSTRIAL SOURCE CATEGORIES AFFECTED BY THIS FINAL ACTION

NESHAP Source category	NAICS 1 code	Regulated entities ²
Surface Coating of Large Appliances	335221	Household laundry equipment.
	335222	Household cooking equipment.
	335224	Household refrigerators and freezers.
	335228	Other major household appliances.
	333312	Commercial laundry, dry cleaning, and pressing equipment.
	333415	Air-conditioners (except motor vehicle), comfort furnaces, and industrial refrigera- tion units and freezers (except heat transfer coils and large commercial and in- dustrial chillers).
	° 333319	Other commercial/service industry machinery, e.g., commercial dishwashers, ovens, and ranges, etc.
Printing, Coating, and Dyeing of Fabrics	31321	Broadwoven fabric mills.
and Other Textiles.	31322	Narrow fabric mills and Schiffli machine embroidery.
	313241	Weft knit fabric mills.
	313311	Broadwoven fabric finishing mills.
		Textile and fabric finishing (except broadwoven fabric) mills.
	313320	
	314110	
	326220	
	339991	
Surface Coating of Metal Furniture	337124	
	337214	
	337127	
	337215	
	337127	
	332951	
	332116	Metal Stamping.

Table 1—NESHAP and Industrial Source Categories Affected by This Final Action—Continued

NESHAP Source category	NAICS1 code	Regulated entities ²
	335121 335122 339111 339114 337127 81142	Showcase, Partition, Shelving, and Locker Manufacturing. Residential Electric Lighting Fixture Manufacturing.

North American Industry Classification System.

²Regulated entities means major source facilities that apply surface coatings to these parts or products.

³ Excluding special industry machinery, industrial and commercial machinery and equipment, and electrical machinery equipment and supplies not elsewhere classified.

Table 1 of this preamble is not intended to be exhaustive, but rather to provide a guide for readers regarding entities likely to be affected by the final action for the source categories listed. To determine whether your facility is affected, you should examine the applicability criteria in the appropriate NESHAP. If you have any questions regarding the applicability of any aspect of this NESHAP, please contact the appropriate person listed in the preceding FOR FURTHER INFORMATION CONTACT section of this preamble.

B. Where can I get a copy of this document and other related information?

In addition to being available in the docket, an electronic copy of this final action will also be available on the internet. Following signature by the EPA Administrator, the EPA will post a copy of this final action at: https:// www.epa.gov/stationary-sources-airpollution/printing-coating-and-dyeingfabrics-and-other-textiles-national#rulesummary, https://www.epa.gov/ stationary-sources-air-pollution/surfacecoating-large-appliances-nationalemission-standards, and https:// www.epa.gov/stationary-sources-airpollution/surface-coating-metalfurniture-national-emission-standards. Following publication in the Federal Register, the EPA will post the Federal Register version and key technical documents at this same website.

Additional information is available on the RTR website at https:// www3.epa.gov/ttn/atw/rrisk/rtrpg.html. This information includes an overview of the RTR program, links to project websites for the RTR source categories, and detailed emissions and other data we used as inputs to the risk assessments.

C. Judicial Review and Administrative Reconsideration

Under Clean Air Act (CAA) section 307(b)(1), judicial review of this final action is available only by filing a petition for review in the United States Court of Appeals for the District of Columbia Circuit (the Court) by May 14, 2019. Under CAA section 307(b)(2), the requirements established by these final rules may not be challenged separately in any civil or criminal proceedings brought by the EPA to enforce the requirements.

Section 307(d)(7)(B) of the CAA further provides that only an objection to a rule or procedure which was raised with reasonable specificity during the period for public comment (including any public hearing) may be raised during judicial review. This section also provides a mechanism for the EPA to reconsider the rule if the person raising an objection can demonstrate to the Administrator that it was impracticable to raise such objection within the period for public comment or if the grounds for such objection arose after the period for public comment (but within the time specified for judicial review) and if such objection is of central relevance to the outcome of the rule. Any person seeking to make such a demonstration should submit a Petition for Reconsideration to the Office of the Administrator, U.S. EPA, Room 3000, EPA WJC South Building, 1200 Pennsylvania Ave. NW, Washington, DC 20460, with a copy to both the person(s) listed in the preceding FOR FURTHER INFORMATION CONTACT section, and the Associate General Counsel for the Air and Radiation Law Office, Office of General Counsel (Mail Code 2344A), U.S. EPA, 1200 Pennsylvania Ave. NW, Washington, DC 20460.

II. Background

A. What is the statutory authority for this action?

Section 112 of the CAA establishes a two-stage regulatory process to address emissions of hazardous air pollutants (HAP) from stationary sources. In the first stage, we must identify categories of sources emitting one or more of the HAP listed in CAA section 112(b) and then promulgate technology-based NESHAP for those sources. "Major sources" are those that emit, or have the potential to emit, any single HAP at a rate of 10 tons per year (tpy) or more, or 25 tpy or more of any combination of HAP. For major sources, these standards are commonly referred to as maximum achievable control technology (MACT) standards and must reflect the maximum degree of emission reductions of HAP achievable (after considering cost, energy requirements, and non-air quality health and environmental impacts). In developing MACT standards, CAA section 112(d)(2) directs the EPA to consider the application of measures, processes, methods, systems, or techniques, including but not limited to those that reduce the volume of or eliminate HAP emissions through process changes, substitution of materials, or other modifications; enclose systems or processes to eliminate emissions; collect, capture, or treat HAP when released from a process, stack, storage, or fugitive emissions point; are design, equipment, work practice, or operational standards; or any combination of the above.

For these MACT standards, the statute specifies certain minimum stringency requirements, which are referred to as MACT floor requirements, and which may not be based on cost considerations. See CAA section 112(d)(3). For new sources, the MACT floor cannot be less stringent than the emission control achieved in practice by the best-controlled similar source. The

MACT standards for existing sources can be less stringent than floors for new sources, but they cannot be less stringent than the average emission limitation achieved by the bestperforming 12 percent of existing sources in the category or subcategory (or the best-performing five sources for categories or subcategories with fewer than 30 sources). In developing MACT standards, we must also consider control options that are more stringent than the floor under CAA section 112(d)(2). We may establish standards more stringent than the floor, based on the consideration of the cost of achieving the emissions reductions, any non-air quality health and environmental impacts, and energy requirements.

In the second stage of the regulatory process, the CAA requires the EPA to undertake two different analyses, which we refer to as the technology review and the residual risk review. Under the technology review, we must review the technology-based standards and revise them "as necessary (taking into account developments in practices, processes, and control technologies)" no less frequently than every 8 years, pursuant to CAA section 112(d)(6). Under the residual risk review, we must evaluate the risk to public health remaining after application of the technology-based standards and revise the standards, if necessary, to provide an ample margin of safety to protect public health or to prevent, taking into consideration costs, energy, safety, and other relevant factors, an adverse environmental effect. The residual risk review is required within 8 years after promulgation of the technology-based standards, pursuant to CAA section 112(f). In conducting the residual risk review, if the EPA determines that the current standards provide an ample margin of safety to protect public health, it is not necessary to revise the MACT standards pursuant to CAA section 112(f).1 For more information on the statutory authority for these final rules, see 83 Federal Register (FR) 46262, September 12,

B. What are the source categories and how does the NESHAP regulate its HAP emissions?

1. What is the Surface Coating of Large Appliances source category and how does the current NESHAP regulate its HAP emissions?

The EPA promulgated the Surface Coating of Large Appliances source category NESHAP on July 23, 2002 (67 FR 48254). The standards are codified at 40 CFR part 63, subpart NNNN. The Surface Coating of Large Appliances industry consists of facilities that are engaged in the surface coating of a large appliance part or product. The source category covered by this MACT standard currently includes ten facilities.

The Surface Coating of Large Appliances NESHAP (40 CFR 63.4081) defines a "large appliance part or product" as "a component of a large appliance product manufactured for household, recreational, institutional, commercial, or industrial use," and defines a coating as a "material that is applied to a substrate for decorative, protective or functional purposes." This source category is further described in the September 12, 2018, RTR proposal. See 83 FR 46262, 46266–67.

The primary HAP emitted from this source category are organic HAP and include xylene, glycol ethers, toluene, methanol, ethyl benzene, methylene chloride, and methyl isobutyl ether with approximately 80 percent of the HAP emissions coming from coating operations and from the mixing and storage areas. The EPA estimates that HAP emissions are currently about 120 tpy. Most large appliance coating is currently applied either by using a spray gun in a spray booth, by dipping the substrate in a tank of coating, or by powder coating.

The Surface Coating of Large

The Surface Coating of Large Appliances NESHAP specifies numerical emission limits for organic HAP emissions from surface coating application operations. The organic HAP emission limit for existing sources is 0.13 kilogram (kg) organic HAP/liter (1.1 pound/gallon (lb/gal)) of coating solids and for new or reconstructed sources is 0.022 kg organic HAP/liter (0.18 lb/gal) of coating solids.

The Surface Coating of Large Appliances NESHAP provides three compliance options for existing sources: (1) Compliant coatings, *i.e.*, all coatings have less than or equal to 0.13 kg organic HAP/liter (1.1 lb/gal) of coating solids; (2) emission rate without add-on controls; or (3) emission rate with add-on controls. Facilities using the compliant material option or the

emission rate without add-on controls option are not required to meet any work practice standards, but facilities that use add-on controls to demonstrate compliance must develop and implement a work practice plan and comply with site-specific operating limits for the emission capture and control system.

2. What is the Printing, Coating, and Dyeing of Fabrics and Other Textiles source category and how does the current NESHAP regulate its HAP emissions?

The EPA promulgated the Printing, Coating, and Dyeing of Fabrics and Other Textiles NESHAP on May 29, 2003 (68 FR 32172). The standards are codified at 40 CFR part 63, subpart OOOO. The Printing, Coating, and Dyeing of Fabrics and Other Textiles industry consists of facilities that are engaged in the printing, coating, slashing, dyeing, or finishing of fabrics and other textiles. The source category covered by this MACT standard currently includes 43 facilities.

The Printing, Coating, and Dyeing of Fabrics and Other Textiles NESHAP (40 CFR 63.4371) defines a fabric as any woven, knitted, plaited, braided, felted, or non-woven material made of filaments, fibers, or yarns, including thread, and further defines textile as any one of the following: (1) Staple fibers and filaments suitable for conversion to or use as yarns, or for the preparation of woven, knit, or nonwoven fabrics; (2) varns made from natural or manufactured fibers; (3) fabrics and other manufactured products made from staple fibers and filaments and from yarn; and (4) garments and other articles fabricated from fibers, yarns, or fabrics. The NESHAP also defines a coating material as an elastomer, polymer, or prepolymer material applied as a thin layer to a textile web. This source category is further described in the September 12, 2018, RTR proposal. See 83 FR 46264.

The primary HAP emitted from printing, coating, and dyeing operations are organic HAP and include toluene, phenol, methanol, and N,N-dimethylformamide. The majority of organic HAP emissions (greater than 95 percent) come from the coating and printing subcategories, with the remainder coming from dyeing and finishing. The EPA estimates that HAP emissions are currently about 737 tpy.

The Printing, Coating, and Dyeing of Fabrics and Other Textiles NESHAP specifies numerical emission limits for organic HAP emissions from three subcategories: Printing and coating; dyeing and finishing; and slashing. The

¹ The Court has affirmed this approach of implementing CAA section 112(f)(2)(A): NRDC v. EPA, 529 F.3d 1077, 1083 (D.C. Cir. 2008) ("If EPA determines that the existing technology-based standards provide an 'ample margin of safety,' then the Agency is free to readopt those standards during the residual risk rulemaking.").

organic HAP emissions limit for existing affected sources is 0.12 kg organic HAP/ kg (lb/lb) of coating solids applied, and for new or reconstructed affected sources the emissions limit is 0.08 kg organic HAP/kg (lb/lb) of coating solids applied. Printing or coating-affected sources also may demonstrate compliance by achieving at least a 98percent HAP reduction for new affected sources or a 97-percent HAP reduction for existing sources. Alternatively, new and existing sources using a thermal oxidizer may demonstrate compliance by achieving a HAP concentration at the oxidizer outlet of no greater than 20 parts per million by volume (ppmv) on a dry basis and having an emission capture system with 100-percent efficiency.

For new, reconstructed, or existing dyeing and finishing operations, the emissions limit for conducting dyeing operations is 0.016 kg organic HAP/kg (lb/lb) dyeing materials applied; the emissions limit for conducting finishing operations is 0.0003 kg organic HAP/kg (lb/lb) finishing materials applied; and the emissions limit for conducting both dyeing and finishing operations is 0.016 kg organic HAP/kg (lb/lb) dyeing and finishing materials applied.

For new, reconstructed, or existing slashing operations, the slashing materials must contain no organic HAP (each organic HAP that is not an Occupational Safety and Health Administration (OSHA)-defined carcinogen that is measured to be present at less than 1 percent by weight is counted as zero).

Facilities using the compliant material option or the emission rate without add-on controls option are not required to meet any work practice standards, but facilities that use add-on controls to demonstrate compliance must develop and implement a work practice plan and comply with sitespecific operating limits for the emission capture and control system.

3. What is the Surface Coating of Metal Furniture source category and how does the current NESHAP regulate its HAP emissions?

The EPA promulgated the Surface Coating of Metal Furniture NESHAP on May 23, 2003 (68 FR 28606). The standards are codified at 40 CFR part 63, subpart RRRR. The Surface Coating of Metal Furniture industry consists of facilities that engage, either in part or in whole, in the surface coating of metal furniture. The Surface Coating of Metal Furniture NESHAP (40 CFR 63.4881) defines metal furniture as furniture or components of furniture constructed either entirely or partially from metal.

The source category covered by this MACT standard currently includes 16 facilities. This source category is further described in the September 12, 2018, RTR proposal. See 83 FR 46264.

Most of the organic HAP emissions from metal furniture surface coating operations occur from coating application operations and drying and curing ovens. Xylene, glycol ethers, ethylbenzene, toluene, and cumene account for more than 95 percent of the HAP emitted from the source category. The EPA estimates that HAP emissions are currently about 145 tpy

The Surface Coating of Metal Furniture NESHAP provides existing sources three compliance options: (1) Use only compliant coatings, i.e., all coatings have less than or equal to 0.10 kg organic HAP/liter (0.83 lb/gal) of coating solids used; (2) collectively manage the coatings such that the monthly emission rate of organic HAP is less than or equal to 0.10 kg organic HAP/liter (0.83 lb/gal) coating solids used; or (3) use emission capture systems and control devices to achieve an organic HAP emissions rate of less than or equal to 0.10 kg organic HAP/ liter (0.83 lb/gal) coating solids used.

Facilities using the compliant material option or the emission rate without add-on controls option are not required to meet any work practice standards, but facilities that use add-on controls to demonstrate compliance must develop and implement a work practice plan and comply with sitespecific operating limits for the emission capture and control system.

C. What changes did we propose for the source categories in our September 12, 2018, RTR proposal?

On September 12, 2018, the EPA published a proposed rule in the Federal Register for the Surface Coating of Large Appliances NESHAP; the Printing, Coating, and Dyeing of Fabrics and Other Textiles NESHAP; and the Surface Coating of Metal Furniture NESHAP, 40 CFR part 63, subpart NNNN, 40 CFR part 63, subpart OOOO, and 40 CFR part 63, subpart RRRR, respectively, that took into consideration the RTR analyses.

We proposed to find that the risks from each of the source categories are acceptable, and that additional emission controls for each source category are not necessary to provide an ample margin of

We also proposed the following amendments:

· Pursuant to the technology reviews for the Surface Coating of Large Appliances source category and the Surface Coating of Metal Furniture

source category, a requirement that, for each coating operation for which coatings are spray applied, highefficiency spray equipment must be used if the source is not using the emission rate with add-on control compliance option;

 For each source category, a requirement for electronic submittal of notifications, semi-annual reports, and compliance reports (which include

performance test reports);

 For each source category, revisions to the SSM provisions of each NESHAP in order to ensure that they are consistent with the Court decision in Sierra Club v. EPA, 551 F. 3d 1019 (D.C. Cir. 2008), which vacated two provisions that exempted source owners and operators from the requirement to comply with otherwise applicable CAA section 112(d) emission standards during periods of SSM;

 For each source category, adding the option of conducting EPA Method 18 of appendix A to 40 CFR part 60, "Measurement of Gaseous Organic Compound Emissions by Gas Chromatography," to measure and then subtract methane emissions from measured total gaseous organic mass

emissions as carbon;

· For each source category, removing references to paragraph (d)(4) of OSHA's Hazard Communication standard (29 CFR 1910.1200), which dealt with OSHA-defined carcinogens, and replacing that reference with a list of HAP that must be regarded as potentially carcinogenic based on EPA guidelines:

 For each source category, IBR of alternative test methods and references to updated alternative test methods; and

 Several minor editorial and technical changes in each subpart. In the same notice, we requested

comment on the following, although we did not propose actual rule amendments:

 Whether the EPA should change the reporting frequency for all reports submitted to the EPA from semi-annual to annual, for all three source categories;

· Whether, for all three source categories, additional performance testing should be required, with a specific request for comment on a requirement to conduct performance testing any time a source plans to undertake an operational change that may adversely affect compliance with an applicable standard, operating limit. or parametric monitoring value;

 Whether the Agency should ban the use of ethylene oxide in the Printing, Coating, and Dyeing of Fabrics and Other Textiles source category under the

technology review;

- Whether the Agency should establish a work practice for sources in the Printing, Coating, and Dyeing of Fabrics and Other Textiles source category for periods of malfunction when an immediate line shutdown may not be feasible due to safety concerns, and concerns that an immediate shutdown would result in the unnecessary generation of hazardous waste; and
- The relationship between CAA sections 112(d)(6), technology review, and CAA section 112(f), residual risk review; specifically, the extent to which findings that underlie a CAA section 112(f) determination should be considered in making any determinations under CAA section 112(d)(6).

III. What is included in these final rules?

This action amends and finalizes the EPA's determinations pursuant to the RTR provisions of CAA section 112 for three rules—the Surface Coating of Large Appliances; the Printing, Coating, and Dyeing of Fabrics and Other Textiles; and the Surface Coating of Metal Furniture. This action also finalizes the following changes for each source category:

- A requirement for periodic performance testing of capture and control devices every 5 years;
- A requirement for electronic submittal of notifications, semi-annual reports, and compliance reports (which include performance test reports);
- Revising the SSM provisions of each NESHAP;
- Adding the option to conduct EPA
 Method 18 of appendix A to 40 CFR part
 60, "Measurement of Gaseous Organic
 Compound Emissions by Gas
 Chromatography," to measure and then
 subtract methane emissions from
 measured total gaseous organic mass
 emissions as carbon;
- Removing references to paragraph (d)(4) of OSHA's Hazard Communication standard (29 CFR 1910.1200), which dealt with OSHAdefined carcinogens, and replacing that reference with a list of HAP that must be regarded as potentially carcinogenic based on EPA guidelines;
- IBR of alternative test methods and references to updated alternative test methods and updated appendices; and
- Several minor technical amendments and clarifications of the applicability of the NESHAP and definitions.

A. What are the final rule amendments based on the risk review for the Surface Coating of Large Appliances; Printing, Coating, and Dyeing of Fabrics and Other Textile; and Surface Coating of Metal Furniture source categories?

This section describes the final amendments to the Surface Coating of Large Appliances NESHAP (40 CFR part 63, subpart NNNN); the Printing, Coating, and Dyeing of Fabrics and Other Textiles NESHAP (40 CFR part 63, subpart OOOO); and the Surface Coating of Metal Furniture NESHAP (40 CFR part 63, subpart RRRR) being promulgated pursuant to CAA section 112(f). The EPA proposed no changes to these three subparts based on the risk reviews conducted pursuant to CAA section 112(f). In this action, we are finalizing our proposed determination that risks from these three subparts are acceptable, and that the standards provide an ample margin of safety to protect public health and prevent an adverse environmental effect. The EPA received no new data or other information during the public comment period that causes us to change that proposed determination. Therefore, we are not requiring additional controls under CAA section 112(f)(2) for any of the three subparts in this action.

B. What are the final rule amendments based on the technology review for the source categories?

For 40 CFR part 63, subpart NNNN, 40 CFR part 63, subpart OOOO, and 40 CFR part 63, subpart RRRR, we are not finalizing any revisions to the MACT standards under CAA section 112(d)(6) pursuant to our technology reviews.

C. What are the final rule amendments addressing emissions during periods of SSM?

We are finalizing, as proposed, changes to the Surface Coating of Large Appliances; the Printing, Coating, and Dyeing of Fabrics and Other Textiles; and the Surface Coating of Metal Furniture source categories NESHAP to eliminate the SSM exemption. Consistent with Sierra Club v. EPA 551 F. 3d 1019 (D.C. Cir. 2008), the EPA is establishing standards in these rules that apply at all times. Table 2 to Subpart NNNN of Part 63, Table 3 to Subpart OOOO of Part 63, and Table 2 to Subpart RRRR of Part 63 (General Provisions applicability table) are being revised to change several references related to requirements that apply during periods of SSM. We eliminated or revised certain recordkeeping and reporting requirements related to the eliminated SSM exemption. The EPA

also made changes to the rule to remove or modify inappropriate, unnecessary, or redundant language in the absence of the SSM exemption. We determined that facilities in these source categories can meet the applicable emission standards in the Surface Coating of Large Appliances; the Printing, Coating, and Dyeing of Fabrics and Other Textiles; and the Surface Coating of Metal Furniture NESHAP at all times, including periods of startup and shutdown. Therefore, the EPA determined that no additional standards are needed to address emissions during these periods. The legal rationale and detailed changes for ŠSM periods that we are finalizing today are set forth in the proposed rule. See 83 FR 46284 through 46288, 46295 through 46298, and 46305 through 46308.

We are finalizing a revision to the performance testing requirements at 40 CFR 63.4164, 40 CFR 63.4360, and 40 CFR 63.4963. The final performance testing provisions prohibit performance testing during startup, shutdown, or malfunction as these conditions are not representative of normal operating procedures. The final rules will also require that operators maintain records to document that operating conditions during the test represent normal

operations.

D. What other changes have been made to the NESHAP?

These rules also finalize, as proposed, revisions to several other NESHAP requirements. We describe the revisions that apply to all the affected source categories in the following paragraphs.

To increase the ease and efficiency of data submittal and data accessibility, we are finalizing a requirement that owners and operators of facilities in the Surface Coating of Large Appliances; Printing, Coating, and Dyeing of Fabrics and Other Textiles; and Surface Coating of Metal Furniture source categories submit electronic copies of certain required performance test reports through the EPA's Central Data Exchange (CDX) website using an electronic performance test report tool called the Electronic Reporting Tool (ERT). We also are finalizing, as proposed, provisions that allow facility operators the ability to seek extensions for submitting electronic reports for circumstances beyond the control of the facility, i.e., for a possible outage in the CDX or Compliance and Emissions Data Reporting Interface (CEDRI) or for a force majeure event in the time just prior to a report's due date, as well as the process to assert such a claim.

We are finalizing amendments to 40 CFR 63.4166(b), 40 CFR 63.4362(b), and

40 CFR 63.4965(b) to add the option of conducting EPA Method 18 of appendix A to 40 CFR part 60, "Measurement of Gaseous Organic Compound Emissions by Gas Chromatography," to measure and then subtract methane emissions from measured total gaseous organic mass emissions, as carbon, for those facilities using the emission rate with add-on control compliance option and EPA Method 25A to measure control device destruction efficiency. We also are finalizing the format of references to test methods in 40 CFR part 60, appendix A to indicate where, in the eight sections of appendix A, each method is found.

For each subpart, we are finalizing the proposal to remove the reference to paragraph (d)(4) of OSHA's Hazard Communication standard (29 CFR 1910.1200) and replace with a reference to a new table in each subpart (Table 5 to 40 CFR part 63, subpart NNNN, Table 6 to 40 CFR part 63, subpart OOOO, and Table 5 to 40 CFR part 63, subpart RRRR) that lists the organic HAP that must be included in calculating total organic HAP content of a coating material present at 0.1 percent or greater by mass. We are finalizing the a provision to include organic HAP in these tables if they were categorized in the EPA's "Prioritized Chronic Dose-Response Values for Screening Risk "human carcinogen," "probable human carcinogen," or "possible human carcinogen," according to "The Risk Assessment Guidelines of 1986" (EPA/ 600/8-87/045, August 1987),2 or as "carcinogenic to humans," "likely to be carcinogenic to humans," or with "suggestive evidence of carcinogenic potential" according to the "Guidelines for Carcinogen Risk Assessment" (EPA/ 630/P-03/001F, March 2005).

We are including in the final rule for each subpart a requirement for facilities to conduct control device performance testing no less frequently than once every 5 years when using the emission rate with add-on controls compliance option. Facilities will be able to conduct these performance tests on the same schedule as their title V operating permit renewals. If the title V permit already requires performance testing, no additional testing will be required.

1. What other changes have been made to the Surface Coating of Large Appliances source category NESHAP?

We are finalizing several miscellaneous technical amendments to

improve the clarity of the rule requirements:

· Clarifying that a thermocouple is part of the temperature sensor referred to in 40 CFR 63.4168(c)(3) for purposes of performing periodic calibration and verification checks;

 Renumbering 40 CFR 63.4130(k)(8) and (9) to be 40 CFR 63.4130(k)(7) and (8) because the current paragraph 40 CFR 63.4130(k) is missing a paragraph (k)(7);

 Revising the rule citation "§ 63.4130(k)(9)" in 40 CFR 63.4163(e) to be "§ 63.4130(k)(8)," consistent with the proposed renumbering of 40 CFR 63.4130(k)(9) to (k)(8);

 Clarifying that 40 CFR 63.4131(a) applies to all records that were submitted as reports electronically via the EPA's CEDRI and adding text to the same provision to clarify that the ability to maintain electronic copies does not affect the requirement for facilities to make records, data, and reports available upon request to a delegated air agency or the EPA as part of an on-site compliance evaluation; and

 Revising 40 CFR 63.4141(b) and (c) to update AŠTM International (ASTM) D1475-90 to ASTM D1475-13, including IBR of the newer version of

the method.

We are finalizing corrections to several erroneous rule citations:

 Revising one instance in 40 CFR 63.4160(a)(1) and three instances in 40 CFR 63.4160(b)(1) that an erroneous rule citation "§ 63.4183" is specified. Section 63.4183 does not exist in 40 CFR part 63, subpart NNNN, and the corrected citation is "§ 63.4083"

 Revising one instance in 40 CFR 63.4110(b)(10) of an erroneous rule citation "§ 63.4081(d)." The corrected

citation is "§ 63.4081(e)";

· Revising one instance in 40 CFR 63.4130(f) and one instance in 40 CFR 63.4130(g) of an erroneous rule citation of "§ 63.4141(a)." The corrected citation is "§ 63.4141";

 Revising one instance in 40 CFR 63.4168(c)(2) where an erroneous rule citation "§ 63.6167(b)(1) and (2)" is specified. The corrected citation is to ''§ 63.4167(b)(1) and (2)'';

 Revising the rule citation for "\$ 63.4120(b)" specified in the fourth column of the table entry for "§ 63.10(d)(2)." The corrected citation is "§ 63.4120(h)"

• Revising the rule citation "\$ 63.4120(b)" specified in the fourth column of the table entry for "§ 63.10(e)(3)." The corrected citation is "§ 63.4120(g)"; and

 Clarifying that 40 CFR 63.4152(c) requires a statement that the source was in compliance with the emission

limitations during the reporting period applies only if there were no deviations from the emission limitations.

The above clarifications and corrections were proposed in the September 12, 2018, RTR proposal. No comments were received during the public comment period and these changes are being finalized as proposed.

What other changes have been made to the Printing, Coating, and Dyeing of Fabrics and Other Textiles source category NESHAP?

We are finalizing the proposal to amend 40 CFR 63.4350(a)(3) and (b)(3); and 40 CFR 63.4351(a) and (e) to correct the references to the alternative control device outlet organic HAP concentration limit from 20 parts per million by weight to 20 ppmv.

In addition, we are finalizing several miscellaneous technical amendments to improve the clarity of the rule

requirements:

 Clarifying that a thermocouple is part of the temperature indicator referred to in 40 CFR 63.4364(c) for purposes of performing periodic calibration and verification checks;

 Clarifying that 40 CFR 63.4313(a) applies to all records that were submitted as reports electronically via the EPA's CEDRI and adding text to the same provision to clarify that the ability to maintain electronic copies does not affect the requirement for facilities to make records, data, and reports available upon request to a delegated air agency or the EPA as part of an on-site compliance evaluation;

 Amending a reporting requirement in 40 CFR 63.4342(f) to harmonize the requirement with the same reporting requirement in 40 CFR 63.4311(a)(4) that requires the same statement to be reported if "there were no deviations from the emission limitations in §§ 63.4290, 63.4292, and 63.4293

 Revising one instance in 40 CFR 63.4311(a)(7)(i)(B) to add a reference for an equation that is missing by adding "6" to the list of equations cited in 40 CFR 63.4311(a)(7)(i)(B) so that the citation reads "Equations 4, 4A, 5, 6, and 7 of § 63.4331";

 Revising one instance in 40 CFR 63.4340(b)(3) in which an erroneous rule citation to "§ 63.4561" is corrected

to "§ 63.4341"; and

 Correcting Table 3 to 40 CFR part 63, subpart OOOO in the fourth column of the table entry for "§ 63.8(g)(1)–(5)" that erroneously refers to "sections 63.4342 and 63.4352." The correct reference is "Sections 63.4363 and 63.4364.

The above clarifications and corrections were proposed in the

² See https://www.epa.gov/fera/dose-responseassessment-assessing-health-risks-associatedexposure-hazardous-air-pollutants.

September 12, 2018, RTR proposal. No comments were received during the public comment period and these changes are being finalized as proposed.

3. What other changes have been made to the Surface Coating of Metal Furniture source category NESHAP?

We are finalizing several proposed miscellaneous technical amendments to improve the clarity of the rule requirements:

 Clarifying that a thermocouple is part of the temperature sensor referred to in 40 CFR 63.4967(c)(3) for purposes of performing periodic calibration and

verification checks;

 Clarifying that 40 CFR 63.4931(a) applies to all records that were submitted as reports electronically via the EPA's CEDRI and adding text to the same provision to clarify that the ability to maintain electronic copies does not affect the requirement for facilities to make records, data, and reports available upon request to a delegated air agency or the EPA as part of an on-site compliance evaluation;

· Revising the second sentence of 40 CFR 63.4920(a)(4) to correct an erroneous reference to "the emission limitations in § 63.4890." The correct reference is to the applicable emission limitations in 40 CFR 63.4890, 63.4892,

and 63.489;

 Changing "emission limitations" in the first sentence of 40 CFR 63.4920(a)(4) to "emission limits";

 Revising 40 CFR 63.4941(c) to update ASTM D1475-90 to ASTM D1475-13, including IBR of the newer version of the method;

 Revising 40 CFR 63.4951(c) to remove repetition with the crossreferenced 40 CFR 63.4941(c); and

 Correcting Table 2 to 40 CFR part 63, subpart RRRR in the fourth column of the table entry for "§ 63.10(e)(3)" for an erroneous rule citation of "§ 63.4920(b)." The correct rule citation is "§ 63.4920(a)."

The above clarifications and corrections were proposed in the September 12, 2018, RTR proposal. No comments were received during the public comment period and these changes are being finalized as proposed.

E. What are the effective and compliance dates of the standards?

The effective date of all three final rules is March 15, 2019. We are finalizing two changes that would

impact ongoing compliance requirements for each of these three subparts. We are adding a requirement that notifications, performance test results, and semiannual compliance reports be submitted electronically using the new template for each subpart that was included in the docket for each proposed rule. We are also changing the requirements for SSM by removing the exemption from the requirements to meet the standard during SSM periods and by removing the requirement to develop and implement an SSM plan. From our assessment of the timeframe needed for implementing the entirety of the revised requirements, the EPA proposed a period of 180 days to be the most expeditious compliance period practicable. No comments were received during the public comment period and the 180-day period is being finalized as proposed. Thus, the compliance date of the final amendments for all affected sources will be September 11, 2019.

F. What are the requirements for submission of performance test data to the EPA?

As proposed, the EPA is taking a step to increase the ease and efficiency of data submittal and data accessibility. Specifically, the EPA is finalizing the requirement for owners and operators of facilities in the Surface Coating of Large Appliances; the Printing, Coating, and Dyeing of Fabrics and Other Textiles; and the Surface Coating of Metal Furniture source categories to submit electronic copies of certain required performance test reports.

Data will be collected by direct computer-to-computer electronic transfer using EPA-provided software. This EPA-provided software is an electronic performance test report tool called the ERT (Electronic Reporting Tool). The ERT will generate an electronic report package which will be submitted to CEDRI, and then archived to the EPA's CDX. A description of the ERT and instructions for using ERT can be found at https://www3.epa.gov/ttn/ chief/ert/index.html. CEDRI can be accessed through the CDX website

(https://cdx.epa.gov/).

The requirement to submit performance test data electronically to the EPA does not create any additional performance testing and will apply only to those performance tests conducted using test methods that are supported by the ERT. A listing of the pollutants and

test methods supported by the ERT is available at the ERT website. Through this approach, industry will save time in the performance test submittal process. Additionally, this rulemaking will benefit industry by reducing recordkeeping costs, as the performance test reports that are submitted to the EPA using CEDRI are no longer required to be kept in hard copy.

State, local, and tribal agencies may benefit from a more streamlined and accurate review of performance test data that will become available to the public through WebFIRE. Having such data publicly available enhances transparency and accountability. For a more thorough discussion of electronic reporting of performance tests using direct computer-to-computer electronic transfer and using EPA-provided software, see the discussion in the preamble of the proposal.

In summary, in addition to supporting regulation development, control strategy development, and other air pollution control activities, having an electronic database populated with performance test data will save industry, state, local, tribal agencies, and the EPA significant time, money, and effort while improving the quality of emission inventories and air quality regulations.

IV. What is the rationale for our final decisions and amendments for these three surface coating source categories?

- A. Residual Risk Reviews
- 1. What did we propose pursuant to CAA section 112(f)?
- a. Surface Coating of Large Appliances (40 CFR part 63, Subpart NNNN) Source Category

Pursuant to CAA section 112(f), the EPA conducted a residual risk review and presented the results of this review, along with our proposed decisions regarding risk acceptability and ample margin of safety, in the September 12, 2018, proposed rule for 40 CFR part 63, subpart NNNN (83 FR 46262). The results of the risk assessment for the proposal are presented briefly below in Table 2 of this preamble. More detail is in the residual risk technical support document, "Residual Risk Assessment for the Surface Coating of Large Appliances Source Category in Support of the May 2018 Risk and Technology Review Proposed Rule," available in the docket for this rulemaking.

TABLE 2—SURFACE COATING OF LARGE APPLIANCES SOURCE CATEGORY INHALATION RISK ASSESSMENT RESULTS AT **PROPOSAL**

Risk assessment	cance	individual er risk nillion)	increased ri	opulation at sk of cancer Million	cancer i	ed annual ncidence per year)	Maximum chronic noncancer TOSHI 1		Maximum screening acute	
	Based on Based on		Based on Based on		Based on	Based on	Based on	noncancer HQ2		
	actual emissions	allowable emissions	actual emissions	allowable emissions	actual emissions	allowable emissions	actual emissions	allowable emissions	Based on actual emissions	
Source Category Whole Facility	0.9 6	1	0 600	50	0.0001 0.0002	0.0002	0.07 0.2	0.08	HQREL = 2	

¹ The target organ-specific hazard index (TOSHI) is the sum of the chronic noncancer hazard quotients (HQ) values for substances that affect the same target

organ or organ system.

The maximum estimated acute exposure concentration was divided by available short-term threshold values to develop HQ values (HQREL = hazard quotient recommended exposure level).

The results of the proposal inhalation risk modeling using actual emissions data, as shown in Table 2 of this preamble, indicate that the maximum individual cancer risk based on actual emissions (lifetime) could be up to 0.9in-1 million, the maximum chronic noncancer TOSHI value based on actual emissions could be up to 0.07, and the maximum screening acute noncancer HQ value (off-facility site) could be up to 2 (driven by glycol ethers). At proposal, the total annual cancer incidence (national) from these facilities based on actual emission levels was estimated to be 0.0001 excess cancer cases per year, or one case in every 10,000 years.

The results of the proposal inhalation risk modeling using allowable emissions data, as shown in Table 2 of this preamble, indicate that the maximum individual cancer risk based on allowable emissions (lifetime) could be up to 1-in-1 million, and the maximum chronic noncancer TOSHI value based on allowable emissions could be up to 0.08. At proposal, the total annual cancer incidence (national) from these facilities based on allowable emission levels was estimated to be 0.0002 excess cancer cases per year, or one case in every 5,000 years.

The maximum whole-facility cancer maximum individual risk (MIR) was determined to be 6-in-1 million at proposal, driven by chromium (VI) compounds from a cleaning/ pretreatment operation. At proposal, the total estimated cancer incidence from whole facility emissions was determined to be 0.0002 excess cancer cases per year, or one excess case in every 5,000 years. Approximately 600 people were estimated to have cancer risks above 1-in-1 million from exposure to HAP emitted from both MACT and non-MACT sources at the 10 facilities in

this source category. The maximum facility-wide TOSHI for the source category was estimated to be 0.2, driven by emissions of methylene diphenyl diisocyanate from foam produced as part of plastic products manufacturing.

There are no persistent and bioaccumulative HAP (PB HAP) emitted by facilities in this source category. Therefore, we did not estimate any human health multi-pathway risks from this source category. Two environmental HAP are emitted by sources within this source category: Hydrogen chloride (HCl) and hydrogen flouride (HF). Therefore, at proposal we conducted a screening-level evaluation of the potential adverse environmental risks associated with emissions of HCl and HF. Based on this evaluation, we proposed that we do not expect an adverse environmental effect as a result of HAP emissions from this source category.

We weighed all health risk factors, including those shown in Table 2 of this preamble, in our risk acceptability determination and proposed that the residual risks from the Surface Coating of Large Appliances source category are acceptable (section IV.A.2.a of proposal preamble, 83 FR 46279, September 12, 2018).

We then considered whether 40 CFR part 63, subpart NNNN provides an ample margin of safety to protect public health and prevents, taking into consideration costs, energy, safety, and other relevant factors, an adverse environmental effect. In considering whether the standards should be tightened to provide an ample margin of safety to protect public health, we considered the same risk factors that we considered for our acceptability determination and also considered the costs, technological feasibility, and other relevant factors related to

emissions control options that might reduce risk associated with emissions from the source category.

As discussed further in section III.B. of this preamble, the only development identified in the technology review was the use of high-efficiency spray equipment. We estimated no changes in costs or emissions would occur due to switching to high-efficiency application methods for this source category. because we expected that large appliance surface coating facilities already are using high-efficiency coating application methods due to state volatile organic compound (VOC) rules and the economic incentives of using more efficient application methods. Because quantifiable reductions in risk are unlikely, we proposed that additional emissions controls for this source category are not necessary to provide an ample margin of safety (section IV.A.2.b. of proposal preamble. 83 FR 46279, September 12, 2018).

b. Printing, Coating, and Dyeing of Fabrics and Other Textiles (40 CFR Part 63, Subpart OOOO) Source Category

Pursuant to CAA section 112(f), the EPA conducted a residual risk review and presented the results of this review, along with our proposed decisions regarding risk acceptability and ample margin of safety, in the September 12, 2018, proposed rule for 40 CFR part 63, subpart OOOO (83 FR 46262). The results of the risk assessment for the proposal are presented briefly below in Table 3 of this preamble. More detail is in the residual risk technical support document, "Residual Risk Assessment for the Printing, Coating, and Dyeing of Fabrics and Other Textiles Source Category in Support of the May 2018 Risk and Technology Review Proposed Rule," available in the docket for this rulemaking.